
Improving EfficientNet for JPEG Steganalysis
Yassine Yousfi

Binghamton University
Department of Electrical and Computer Engineering

Binghamton, NY 13902-6000
yyousfi1@binghamton.edu

Jan Butora
Binghamton University

Department of Electrical and Computer Engineering
Binghamton, NY 13902-6000
jbutora1@binghamton.edu

Jessica Fridrich
Binghamton University

Department of Electrical and Computer Engineering
Binghamton, NY 13902-6000
jfridrich@binghamton.edu

Clément Fuji Tsang
NVIDIA

cfujitsang@nvidia.com

ABSTRACT
In this paper, we study the EfficientNet family pre-trained on Ima-
geNet when used for steganalysis using transfer learning. We show
that certain “surgical modifications” aimed at maintaining the input
resolution in EfficientNet architectures significantly boost their per-
formance in JPEG steganalysis, establishing thus new benchmarks.
The modified models are evaluated by their detection accuracy, the
number of parameters, the memory consumption, and the total
floating point operations (FLOPs) on the ALASKA II dataset. We
also show that, surprisingly, EfficientNets in their “vanilla form”
do not perform as well as the SRNet in BOSSbase+BOWS2. This is
because, unlike ALASKA II images, BOSSbase+BOWS2 contains ag-
gressively subsampled images with more complex content. The sur-
gical modifications in EfficientNet remedy this underperformance
as well.

CCS CONCEPTS
• Computing methodologies→Neural networks; Image pro-
cessing.

KEYWORDS
Steganography, Steganalysis, EfficientNet, Convolutional Neural
Networks, ALASKA

ACM Reference Format:
Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang. 2021.
Improving EfficientNet for JPEG Steganalysis. In Proceedings of the 2021
ACM Workshop on Information Hiding and Multimedia Security (IHMMSec
’21), June 22–25, 2021, Virtual Event, Belgium. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3437880.3460397

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8295-3/21/06. . . $15.00
https://doi.org/10.1145/3437880.3460397

1 INTRODUCTION
Steganalysis with machine learning has undergone an explosive de-
velopment during the past five years. The previous state of the art in
the form of rich (high-dimensional) media models [1–8] has quickly
been replaced with convolutional neural networks (CNNs) [9–18].
The early network architectures aimed at detection of steganogra-
phy have been designed by domain-area experts, which explains
the inheritance of certain elements in early network designs, such
as high-pass preprocessing of images [9, 10], non-random initializa-
tion by filters used in rich models [11] or discrete cosine transform
(DCT) kernels [18], and use of, what appears from today’s point of
view as non-traditional activations, such as the thresholded linear
unit [11], absolute value [10], and Gaussian activation [9]. This was
driven by a firm belief of domain experts that the task of steganal-
ysis is somehow fundamentally different from the main objective
of computer vision, which is object classification. Fundamentally,
though, detection of modern content-adaptive steganography is
equivalent to detecting noise-like signals shaped by the content
itself. It is thus not surprising that CNNs trained on computer vision
tasks are a good starting point for transfer learning in steganalysis,
as well as the closely related field of digital forensics [19–22].

This is confirmed by the proliferation of pre-trained models
from computer vision in the recent Kaggle competitions in Camera
Model Identification,1 Deep Fake Detection,2 and especially, in the
ALASKA II [23] JPEG steganalysis challenge.3 Many participants in
ALASKA II [24–26] used the popular EfficientNet [27] pre-trained
on ImageNet [28] and refined for steganalysis in the JPEG domain.
Such architectures achieved markedly better performance [23, 24]
than the popular SRNet [29] considered as one of the state-of-the-
art CNNs for steganalysis.

In this paper, we investigate several “surgical modifications” of
the EfficientNet family to further improve their performance for
steganalysis while keeping in mind the computational complexity
both in terms of FLOPs, the memory consumption, and the number
of parameters. The main idea for the surgical modifications follows
what has already been hinted at in [10, 11] and further exploited
in [29], namely that decreasing the resolution of the networks in
early layers via pooling or striding negatively affects their detection

1https://www.kaggle.com/c/sp-society-camera-model-identification
2https://www.kaggle.com/c/deepfake-detection-challenge
3https://www.kaggle.com/c/alaska2-image-steganalysis

https://doi.org/10.1145/3437880.3460397
https://doi.org/10.1145/3437880.3460397
https://www.kaggle.com/c/sp-society-camera-model-identification
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/alaska2-image-steganalysis

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang

accuracy as such operations enhance image content while suppress-
ing the noise-like stego signal. Using the ALASKA II dataset as a
benchmark, we investigate several types of surgical modifications
in terms of their performance and computational complexity.

Note that we do not investigate after-the-fact model compression
methods such as pruning [30, 31] or distillation [32], as these are
conventionally applied after an initial training, and can be applied
to any architecture.

We also study the EfficientNet family in other, aggressively down-
sampled image datasets, such as the BOSSbase, where the Efficient-
Net family does not seem to perform as well with respect to the
SRNet. We attribute this drop to the aggressive subsampling of
images and show that the proposed surgical modifications signifi-
cantly improve EfficientNet detection accuracy.

In the next section, we introduce the notation used in this paper.
Section 3 lays out the experimental setting. Section 4 describes the
ImageNet pre-trained CNNs and their building blocks. Section 5
describes the proposed “surgical modifications.” Section 6 studies
the ImageNet pre-trained EfficientNet in other datasets. The paper
is concluded in Section 7.

2 NOTATION
For consistency with the results from the ALASKA II competition,
we evaluate the detectors’ performance using the weighted area
under the receiver operating characteristic (ROC) curve (wAUC)

wAUC =

1ˆ

0

𝑤 (𝑃D (𝑃FA))𝑃D (𝑃FA)d𝑃FA,

where 𝑃D (𝑃FA) is the probability of detection of a stego image as a
function of the probability of false alarm, which defines the ROC
curve. The weighting function𝑤 (𝑃D) ∝ 2 if 𝑃D < 0.4 and𝑤 (𝑃D) ∝
1 if 𝑃D ≥ 0.4 normalizes the wAUC to be in the interval [0, 1]. For
reference, we also occasionally report the minimum average error
rate under equal priors 𝑃E = min(𝑃D (𝑃FA) + 𝑃FA).

FLOPs is the total number of floating point operations performed
to do a single forward pass using a single image input, computed
using the ‘fvcore‘ package from Facebook Research.4 Note that
only multiplications are counted while additions as well as the
bias are ignored. For example, a 𝑘 × 𝑘 × 𝐶out convolution layer
with no stride and same padding operating on a 𝐶in ×𝐻 ×𝑊 has
FLOPs = 𝑘2𝐻𝑊𝐶in𝐶out.

We measure the GPU memory needed to train a model using the
peak memory consumption from the ‘nvidia-smi‘ output. To this
end, we choose a batch-size of 8, a single GPU, and the other hyper-
parameters as detailed in 4.2. Note that the memory consumption
is only an estimate and strongly depends on the implementation
used. Also, it should not be confused with the total GPU memory
needed since a larger batch-size is used (using data parallelism over
multiple GPUs) as detailed in 4.2.

3 EXPERIMENTAL SETTING
The ALASKA II [23] dataset contains 3×25,000 different cover
images compressed with quality factors 75, 90, and 95, and the

4https://github.com/facebookresearch/fvcore

same number of stego images embedded with J-UNIWARD [33], J-
MiPOD [34], and UERD [35], making the training set size 4×75,000
images. The payload embedded in each image was scaled so that
all images were approximately equally difficult to detect – compar-
atively smaller payloads were embedded in smooth images with
larger payloads in highly textured or noisy images. The average
payload embedded across the database was 0.4 bits per non-zero
AC DCT coefficient (bpnzac). The dataset was randomly divided
into three sets with 4×3×22,000, 4×3×1,000, and 4×3×2,000 images,
for training, validation, and testing respectively. The splits were
made compatible with those used in [24]. Note that, unlike [24],
this paper does not report results using test-time augmentation
(TTA).

Section 6.1 describes additional datasets used to investigate the
ImageNet pre-trained models in different settings. We describe
those settings within Section 6 for better readability.

4 EFFICIENTNET FOR JPEG STEGANALYSIS
4.1 EfficientNet and SE-ResNet
Our investigation is constrained to the EfficientNet family widely
used by the top competitors in the Alaska II challenge, and ulti-
mately compared with the SE-ResNet [36] used by the winner of
the competition. Other work [24] reports on the MixNet [37] ar-
chitecture, which we argue achieves a very similar performance as
the EfficientNet due to strong architecture similarities. Thus, we
do not report results using the MixNet family for this reason but
expect our contributions to transfer to such similar architectures.

The EfficientNet is built using the Inverted Residual Block [38]
(IR) depicted in Figure 1. The lightweight depth-wise separable
convolution (D-Conv) is the key to the network’s efficiency. On the
other hand, the SE-ResNet uses the classical ResNet Block [39]. Both
architectures use the Squeeze & Excite Block [36] with different
reduction parameters.

4.2 Transfer learning procedure
Fine-tuning ImageNet pre-trained models on a steganalysis task is
done usingmulti-class cross-entropy loss and the AdamWoptimizer
with 10−2 weight decay, for 60 epochs using a cosine learning rate
scheduler with a start LR of 10−3 and end LR of 2 × 10−5, and
𝐷4 training augmentation. The model is converted and trained in
Automatic Mixed Precision (AMP). We used a minimum batch size
of 24, which was increased for smaller architectures to speed up
training. The mini-batches were not pair-constrained, which means
that on average, one batch included 1/4 cover images and 3/4 stego
images randomly sampled. The JPEG images were decompressed
to RGB color space without rounding or clipping. After training,
we chose the best checkpoint based on the wAUC metric on the
validation set.

5 “SURGICAL MODIFICATIONS” IMPROVE
EFFICIENTNET

The Alaska II Kaggle competition has shown that many success-
ful ImageNet pre-trained CNNs can achieve a very competitive
performance when fine-tuned on a steganalysis task. Moreover,
carefully modified ImageNet pre-trained CNNs can be made even

https://github.com/facebookresearch/fvcore

Improving EfficientNet for JPEG Steganalysis IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

Figure 1: (a) The Inverted Residual block used in the EfficientNet architecture, 𝑡 denotes the expansion parameter of the block.
(b) The ResNet Block used in SE-ResNet18. (c) The Squeeze & Excite block, 𝑟 denotes the reduction parameter. In (a) and (b)
Conv Blocks are composed of a Convolution layer, Batch Normalization layer, and an Activation.

better. We consider two types of “surgical modifications”: ablation
of downsampling elements in the architectures (stride, pooling) and
insertion of additional layers operating on high-resolution feature
representations.

5.1 Stem stride ablation
In [24], the authors show that the performance of the MixNet-S
can be significantly improved by removing the stride from its stem.
This was also reported by many competitors.5 We report similar
results with the EfficientNet family for consistency with the pa-
per’s experiments. Table 1 shows that removing strides from the
stem (no stride L0) and from the next strided block (no stride L2) of
EfficientNet B0 significantly improves the performance but comes
at a substantial price in FLOPs and memory requirements because
the convolutions will operate on 4× larger volumes after each re-
moved stride. Removing strides from the stem of EfficientNet B4
gives a stellar performance but with an unreasonably high memory
consumption making the training extremely slow.

For SE-ResNet, we first remove the max-pooling in the stem
and train for 10 epochs, then remove the stride and continue the
training. Note that this was not described by the winner of the
Alaska II competition in [26] but was essential to successfully train
the modified architecture with the hyper-parameters of our experi-
ments. Similarly, this surgical modification comes at a substantial
price in FLOPs.

5https://www.kaggle.com/c/alaska2-image-steganalysis/discussion

Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla B0 .92601 2.15 4.01 3,354
B0 no stride L0 .92844 8.31 4.01 10,162
B0 no stride L2 .93552 30.73 4.01 24,184
B4 no stride L0 .94408 31.63 17.56 21,484
B6 no stride L0 .94618 69.97 40.74 40,186

Table 1: wAUC, FLOPs, and the number of parameters of dif-
ferent modifications of the EfficientNet family.

Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla SE-ResNet .87661 9.53 11.26 3,084
SE-ResNet no stride/pool L0 .94231 144.89 11.26 8,468

Table 2: wAUC, FLOPs, and the number of parameters of the
SE-ResNet-18 and its modified version.

Note that disabling stride and/or pooling in the stem does not
change the number of parameters of a network, however the com-
putational cost (GPU memory and FLOPs) to train it increase sig-
nificantly. This motivates our choice to use FLOPs as a model-
complexity measure.

https://www.kaggle.com/c/alaska2-image-steganalysis/discussion

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang

Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla B0 .92601 2.15 4.01 3,354
B0 - original pre-stem .92902 7.16 4.04 3,978
B0 - pre-stem IR blocks .93300 4.98 4.03 6,460
B0 - post-stem IR blocks .93313 4.88 4.02 6,812

Table 3: wAUC, FLOPs, and the number of parameters of dif-
ferent modifications of the EfficientNet-B0.

Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

B0 - post-stem IR blocks 𝑡 = 1 .93313 4.88 4.02 6,812
B0 - post-stem IR blocks 𝑡 = 4 .93506 12.15 4.05 13,840
B0 - post-stem ResNet blocks .93623 18.31 4.08 6,488

Table 4: wAUC, FLOPs, and the number of parameters of dif-
ferent variants of the post-stem surgical modification with
the EfficientNet-B0.

5.2 Unpooled layers implant
In this section, we show that the performance can be improved at
a much lower cost in term of FLOPs and memory requirements by
inserting layers at influential parts of the architecture, namely in
early layers to mimic the “unpooled layers” of steganalysis CNNs,
such as the SRNet.

Some Alaska II competitors reported performance increase when
adding layers to the EfficientNet architecture [40].We call this surgi-
cal modification “pre-stem insertion,” since the layers are implanted
before the stem. The original modification described in [40] only
included 3 convolutional blocks with an increased number of chan-
nels. We show that using 4 blocks and a large number of channels
from the first block is beneficial. Note that we did not modify the
last two layers as described in [40] as this degraded the performance
in our experiments.

Additionally, we introduce a new surgical modification called
“post-stem” insertion, which (i) disables the downsampling oper-
ation in the stem and (ii) inserts convolutional blocks after the
stem, last of which has a stride of 2. In essence, post-stem and
pre-stem are very similar architectures, with post-stem being more
computationally efficient and more accurate as shown in Table 3.

We choose to study the post-stem surgery further by changing
some of its design hyper-parameters. Increasing the expansion pa-
rameter 𝑡 of the implanted Inverted Residual blocks improves the
representation capacity of those layers by allowing to form a larger
number of noise residuals. Using the ResNet blocks instead of the
lightweight Inverted Residual blocks also allows the implants to
form more complex residuals. Both changes improve the perfor-
mance as shown in Table 4. These improvements prove, yet again,
the importance of the early unpooled layers in the architectures.
Note that these improvements also come at a FLOPs cost, making
the surgically modified model more computationally demanding
but still having a better performance-memory to compute trade-off
than the stride ablation studied in Section 5.1.

8 10 12 14 16 18 20 22
FLOPs (B)

0.932

0.933

0.934

0.935

0.936

0.937

w
A

U
C

2
b

lo
ck

s

3
b

lo
ck

s

4
b

lo
ck

s

5
b

lo
ck

s

B0 Post-stem ResNet with N blocks

Figure 2: wAUC vs. FLOPs of EfficientNet-B0 with a post-
stem modification and a varying number of inserted convo-
lutional blocks.

We also study the effects of the number of inserted layers in Fig-
ure 2, which shows that the performance increases with increasing
number of blocks, then saturates at 4 inserted ResNet blocks. He
hypothesize that this optimal number of inserted layers depends
on the cover and/or stego source and would require to be validated
accordingly. However, for the sake of the experiments in this paper,
we fix a number of inserted layers of 4 for the post-stem surgery,
keeping in mind that this number might be different for different
scenarios (e.g. spatial domain steganalysis).

Figure 3 describes all insertion strategies proposed and studied
in this paper. The insertion strategies are shown with 4 added
blocks, determined by the results shown in Figure 2. We show the
performance of the modifications studied in Figure 4, removing the
stride performs best but at a significant memory cost as discussed
in Section 5.1, the next best modification coming at a lower memory
cost is the post-stem with ResNet blocks. The SE-ResNet18 with
stride and pooling removed has a significant FLOPs count due to the
use of the expensive ResNet blocks, but has a reasonable memory
footprint thanks to its reduced size. A similar trend is observed with
𝑃E as a metric instead of the wAUC. The equivalent of Figure 4 with
the 𝑃E metric is shown in Figure 7 in the Appendix for reference.

5.3 Do we gain from ImageNet pre-training of
modified CNNs?

A relevant question regarding the surgical modifications is whether
we might gain from pre-training the modified architectures on Im-
ageNet instead of only modifying them at the transfer learning
stage. This question is especially relevant for the post-stem mod-
ification where randomly initialized layers are inserted within a
network already trained on ImageNet. Table 5 shows that there is
no substantial benefit from training the modified EfficientNet on
ImageNet. The table also includes a “control” vanilla EfficientNet-B0
pre-training to show that our local ImageNet pre-training matches

Improving EfficientNet for JPEG Steganalysis IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

Figure 3: All surgical modifications studied. Blue blocks are the inserted blocks. In (a) and (b) the stem* convolutional kernels
are duplicated and concatenated to match the previous layer’s dimension.

Pre-trained
w/ modification

Surgically
modified

B0 - post-stem .93391 .93313
(control) Vanilla B0 .92609 .92601

Table 5: wAUC of EfficientNet-B0 with post-stem with In-
verted Residual Block 𝑡 = 1 and unchanged. Modification
done at the pre-training stage or at the transfer learning
stage.

the one done by the EfficientNet-pytorch6 library in terms of per-
formance in the downstream task. This means that it is safe to
“surgically” apply the modifications at the transfer learning stage.
Pre-training on the ImageNet dataset was done for 100 epochs with
the SGD optimizer with 0.9 momentum, a weight-decay of 10−5,
the OneCycle learning rate scheduler with a maximum learning
rate of 0.5, a minimum of 10−3, and a batch-size of 512.

Figure 5 shows the validation wAUC at different training epochs
of the two versions of the B0 - post-stem in Table 5. We note that
while the surgically modified network starts lower than the the
one pre-trained with the modification, the two versions eventually
converge to a very close peak performance as shown in Table 5.
The early epochs of post-stem surgically modified networks usu-
ally exhibit a lower performance due to the randomly initialized

6https://github.com/lukemelas/EfficientNet-PyTorch

convolutional blocks inserted, but the performance increases given
enough epochs.

6 WHERE DOES EFFICIENTNET SHINE?
6.1 Additional experimental setting
For this section, we use two more datasets to compare the effective-
ness of the ImageNet pre-trained EfficientNet in different settings.

BOSSbase+BOWS2 is the union of BOSSbase 1.01 [41] and BOWS2 [42]
converted to grayscale and resized to 256×256 using Matlab’s ’im-
resize’ with default parameters. We use JPEG quality factors 75,
90, and 95 and embedding schemes J-UNIWARD, J-MiPOD, and
UERD at 0.4, 0.4 and 0.2 bnzac respectively (fixed payload sender).
The dataset is randomly divided into three sets with 4 × 3 × 14, 000
(BOSSbase+BOWS2), 4× 3× 1, 000 (BOSSbase), 4× 3× 5, 000 images
(BOSSbase) for training, validation, and testing respectively. The
splits are also made compatible with [29]. Note that for consistency
with the results from the ALASKA II competition, we used the
same versions of the previously listed embedding schemes as in
the competition’s dataset. New versions of the J-MiPOD [43] or
correctly implemented UERD were not considered.

We create a new dataset called ALASKA II BOSS-style which
contains raw images from the ALASKA II dataset, processed using
the BOSSbase processing script and resized to 256 × 256 using
ImageMagick’s resize with default parameters. We use the same
embedding script as the ALASKA II dataset with an average payload
across database of 0.2 bpnzac (Detectability Limited Sender [44]).
The dataset is divided into the same splits as the ALASKA II dataset.

https://github.com/lukemelas/EfficientNet-PyTorch

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang

0 20 40 60 80 100 120 140
FLOPs (B)

0.920

0.925

0.930

0.935

0.940

0.945

w
A

U
C

B2

B4

B6
B0

B4

B6

B0

B4

B6

B0

B4

B6
SE-ResNet18

Vanilla

Post-stem IR blocks

Post-stem ResNet blocks

No stride @Layer 0

5000 10000 15000 20000 25000 30000 35000 40000
Mem (MiB)

0.920

0.925

0.930

0.935

0.940

0.945

w
A

U
C

B2

B4

B6
B0

B4

B6

B0

B4

B6

B0

B4

B6
SE-ResNet18

Vanilla

Post-stem IR blocks

Post-stem ResNet blocks

No stride @Layer 0

Figure 4: wAUC vs. FLOPs and memory requirements of
different surgical modifications. The EfficientNet B6 with
stride disabled and B6 post-stemwith ResNet blocks achieve
a comparable performance to the SE-ResNet18 with pool
and stride disabled, with one half of the FLOPs. For ref-
erence, we include the vanilla versions of the EfficientNet
trained using the schedule described in [24] in Section II.A.

6.2 Training and transfer learning procedure
We use the SRNet [29] without the pair-constraint [24] as a baseline
to evaluate EfficientNet in these additional datasets. SRNet was
first trained on QF75 with the pair-constraint for 200 epochs then
refined on QF75, 90, and 95 without the pair-constraint for another
100 epochs. Training was done with the multi-class cross-entropy
loss, using the Adamax optimizer with a 10−4 weight decay, the
OneCycle learning rate scheduler with a start LR of 4 × 10−5, a
maximum LR of 10−3, and an end LR of 2 × 10−5. Inputs were also
transformed to RGB for color images without rounding or clipping,
and divided by 255 before feeding to the network.

For the ImageNet pre-trained EfficientNet and SE-ResNet18, we
used the same hyper-parameters as in 4.2. For grayscale BOSS-
base+BOWS2, we insert a 1 × 1 convolution layer with 3 output

0 10 20 30 40 50 60
epoch

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

V
al

id
at

io
n

w
A

U
C

Surgically modified

Pretrained w/ modification

Figure 5: Validation wAUC at different training epochs of
the EfficientNet-B0 with post-stem with Inverted Residual
Block 𝑡 = 1 both pre-trained with the modification or surgi-
cally modified.

channels before the stem to match the input channels of the pre-
trained stem.

6.3 The effect of BOSS-style processing
This investigation section started by noticing the surprising differ-
ence between the first two columns in Table 6: in the ALASKA II
dataset, the vanilla EfficientNet-B4 outperforms SRNet, but in the
BOSSbase+BOWS2 dataset, SRNet outperforms the EfficientNet-B4.
Note that this was also observed in [24] with the ALASKA I [45]
dataset.

In [24], the authors hypothesized that this shift is due to the fact
that ImageNet pre-trained models might be more data efficient than
the SRNet trained from scratch.

However, we show that the main differences between the first
two columns of Table 6 are mostly due to the cover processing
pipeline because using a “BOSSbase-style” ALASKA II processed
database again shows EfficientNet-B4 underperforming.

Table 6 shows that vanilla versions of ImageNet pre-trained mod-
els underperform in strongly subsampled cover sources, such as
BOSSbase+BOWS2 and BOSS-style datasets. We hypothesize that
this is due to their lack of unpooled layers. Strongly subsampled
cover sources exhibit more high frequency content, which will re-
quire more layers operating at the original resolution. The proposed
surgical modifications help mitigate this effect as they introduce
more unpooled layers into the architecture.

Note that this observation does not hold for the UERD embedding
scheme. This is because the ALASKA II competition used a faulty
implementation of UERD that concentrates most of the embedding
changes at the image boundary and thus is much less dependent
on the cover source.

We verify that BOSS-style datasets have indeed more high fre-
quency content by computing the average energy of the KB [46]
residual over 500 images from the original ALAKA II and the
ALASKA II BOSS-style. Figure 6 shows the distributions of the

Improving EfficientNet for JPEG Steganalysis IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

Dataset ALASKA II BOSSbase+BOWS2 ALASKA II BOSS-style
Sender DeLS 0.4 DeLS 0.4 DeLS 0.4 PLS 0.4 PLS 0.4 PLS 0.2 DeLS 0.2 DeLS 0.2 DeLS 0.2

J-UNI J-MiPOD UERD J-UNI J-MiPOD UERD J-UNI J-MiPOD UERD
SRNet .8718 .9427 .9364 .9634 .9780 .9773 .9903 .9142 .9279
B4 .8783 .9475 .9540 .9528 .9723 .9812 .9892 .9021 .9436

B4 no stride L0 .9092 .9592 .9636 .9700 .9828 .9857 .9925 .9302 .9528
B4 post-stem ResNet blocks .9006 .9574 .9620 .9746 .9852 .9879 .9923 .9302 .9532
B6 post-stem ResNet blocks .9057 .9566 .9629 .9731 .9880 .9842 .9927 .9382 .9503

SE-ResNet18 no stride/pool L0 .9045 .9610 .9611 .9729 .9839 .9865 .9911 .9234 .9491

Table 6: wAUC of different modifications of the EfficientNet, the SE-ResNet18, and the SRNet as a baseline in three different
datasets with their respective sender strategies.

U
n

co
m

p
re

ss
ed

Q
F

95

Q
F

90

Q
F

75

U
n

co
m

p
re

ss
ed

Q
F

95

Q
F

90

Q
F

75

0

10

20

30

40

50

60

70

80

K
B

re
si

d
u

al
en

er
gy

(s
q
rt

)

BOSS-style processing

ALASKA II processing

Figure 6: Distribution of the square root of the average KB
residual energy across 500 images uncompressed and JPEG
compressed with qualities 95, 90, and 75 from the ALASKA
II and the ALASKA II BOSS-style datasets.

square root of the average energy (the square root helps avoid large
outliers) for the two datasets in the uncompressed format, JPEG
compressed with qualities 95, 90, and 75. Figure 6 shows that indeed,
BOSS-style processing contains complex content when measured
by the inability to predict the pixel values from their neighborhoods
using the KB filter.

Table 6 also shows that the EfficientNet B6 (amd B4) post-stem
with ResNet blocks have a very comparable performance to the
SE-ResNet18 no stride/pool L0 (even slightly better) on the BOSS-
base+BOWS2 and ALASKA II BOSS-style datasets. Note that on
these datasets, the post-stem surgery performs better than the stride
ablation, unlike in the ALASKA II dataset as shown in Figure 4.

7 CONCLUSION
We propose and study several different ways to modify the Ef-
ficientNet architecture to significantly improve performance for
JPEG steganalysis. These so called “surgical modifications” are done

at the transfer-learning stage to substantially improve the perfor-
mance upon the original (vanilla) EfficientNet architectures. The
post-stem modification boosts the performance while keeping the
computational cost and the memory requirements reasonable by
increasing the number of unpooled layers in the architecture. Re-
moving the stride in the stem of the EfficientNet architectures, on
the other hand, requires large GPU memory for training. The mod-
ified models reach state-of-the-art performance with less than 1/2
of the FLOPs of the current best model on the ALASKA II dataset.

We also test the EfficientNet family in different datasets and
notice that in strongly subsampled cover sources (e. g., BOSS-
base+BOWS2), they underperform with respect to the SRNet due to
their lack of unpooled layers. The proposed surgically modified Effi-
cientNet architectures overcome this issue and surpass the popular
SRNet on a variety of datasets.

More broadly, this paper confirms that off-the-shelf successful
computer vision architectures, such as the EfficientNet, can reach
unparalleled performance in JPEG steganalysis. No special elements
were added to the architecture besides the unpooled layers known
to be beneficial for steganalysis.

ACKNOWLEDGMENTS
The work on this paper was supported by NSF grants no. 1561446
and 2028119.

REFERENCES
[1] J. Fridrich and J. Kodovský, “Rich models for steganalysis of digital images,” IEEE

Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 868–882, June
2011.

[2] J. Kodovský and J. Fridrich, “Steganalysis of JPEG images using rich models,” in
Proceedings SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics
2012, A. Alattar, N. D. Memon, and E. J. Delp, Eds., vol. 8303, San Francisco, CA,
January 23–26, 2012, pp. 0A 1–13.

[3] L. Chen, Y. Shi, P. Sutthiwan, and X. Niu, “A novel mapping scheme for ste-
ganalysis,” in International Workshop on Digital Forensics and Watermaking, ser.
LNCS, Y. Shi, H.-J. Kim, and F. Perez-Gonzalez, Eds., vol. 7809. Springer Berlin
Heidelberg, 2013, pp. 19–33.

[4] W. Tang, H. Li, W. Luo, and J. Huang, “Adaptive steganalysis against WOW em-
bedding algorithm,” in 2nd ACM IH&MMSec. Workshop, A. Uhl, S. Katzenbeisser,
R. Kwitt, and A. Piva, Eds., Salzburg, Austria, June 11–13, 2014, pp. 91–96.

[5] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich, “Selection-
channel-aware rich model for steganalysis of digital images,” in IEEE International
Workshop on Information Forensics and Security, Atlanta, GA, December 3–5, 2014.

[6] V. Holub and J. Fridrich, “Phase-aware projection model for steganalysis of JPEG
images,” in Proceedings SPIE, Electronic Imaging, Media Watermarking, Security,
and Forensics 2015, A. Alattar and N. D. Memon, Eds., vol. 9409, San Francisco,
CA, February 8–12, 2015.

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang

[7] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang, “Steganalysis of adaptive JPEG stega-
nography using 2DGabor filters,” in 3rd ACM IH&MMSec. Workshop, P. Comesana,
J. Fridrich, and A. Alattar, Eds., Portland, Oregon, June 17–19, 2015.

[8] T. Denemark, M. Boroumand, and J. Fridrich, “Steganalysis features for content-
adaptive JPEG steganography,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1736–1746, August 2016.

[9] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for steganalysis via
convolutional neural networks,” in Proceedings SPIE, Electronic Imaging, Media
Watermarking, Security, and Forensics 2015, A. Alattar and N. D. Memon, Eds., vol.
9409, San Francisco, CA, February 8–12, 2015.

[10] G. Xu, H. Z.Wu, and Y. Q. Shi, “Structural design of convolutional neural networks
for steganalysis,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 708–712, May
2016.

[11] J. Ye, J. Ni, and Y. Yi, “Deep learning hierarchical representations for image
steganalysis,” IEEE Transactions on Information Forensics and Security, vol. 12,
no. 11, pp. 2545–2557, November 2017.

[12] M. Yedroudj, F. Comby, and M. Chaumont, “Yedroudj-net: An efficient CNN for
spatial steganalysis,” in IEEE ICASSP, Alberta, Canada, April 15–20, 2018, pp.
2092–2096.

[13] B. Li, W. Wei, A. Ferreira, and S. Tan, “ReST-Net: Diverse activation modules and
parallel subnets-based CNN for spatial image steganalysis,” IEEE Signal Processing
Letters, vol. 25, no. 5, pp. 650–654, May 2018.

[14] J. Zeng, S. Tan, G. Liu, B. Li, and J. Huang, “WISERNet: Wider separate-then-
reunion network for steganalysis of color images,” CoRR, vol. abs/1803.04805,
2018. [Online]. Available: http://arxiv.org/abs/1803.04805

[15] M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich, “JPEG-phase-aware con-
volutional neural network for steganalysis of JPEG images,” in The 5th ACM
Workshop on Information Hiding and Multimedia Security, M. Stamm, M. Kirchner,
and S. Voloshynovskiy, Eds., Philadelphia, PA, June 20–22, 2017.

[16] J. Yang, Y.-Q. Shi, E. Wong, and X. Kang, “JPEG steganalysis based on DenseNet,”
vol. abs/1711.09335, 2017. [Online]. Available: http://arxiv.org/abs/1711.09335

[17] J. Zeng, S. Tan, B. Li, and J. Huang, “Large-scale JPEG image steganalysis using
hybrid deep-learning framework,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 5, pp. 1200–1214, May 2018.

[18] G. Xu, “Deep convolutional neural network to detect J-UNIWARD,” in The
5th ACM Workshop on Information Hiding and Multimedia Security, M. Stamm,
M. Kirchner, and S. Voloshynovskiy, Eds., Philadelphia, PA, June 20–22, 2017.

[19] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, “Face-
forensics++: Learning to detect manipulated facial images,” in 2019 IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1–11.

[20] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva, “Detection of GAN-
generated fake images over social networks,” in 2018 IEEE Conference on Multi-
media Information Processing and Retrieval, 2018, pp. 384–389.

[21] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner, and L. Verdoliva,
“ForensicTransfer: Weakly-supervised domain adaptation for forgery detection,”
arXiv, 2018. [Online]. Available: http://arxiv.org/abs/1812.02510

[22] S. Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “CNN-generated
images are surprisingly easy to spot... for now,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 8692–8701.

[23] R. Cogranne, Q. Giboulot, and P. Bas, “ALASKA–2: Challenging academic re-
search on steganalysis with realistic images,” in IEEE International Workshop on
Information Forensics and Security, Held virtually, December 6–11, 2020.

[24] Y. Yousfi, J. Butora, E. Khvedchenya, and J. Fridrich, “ImageNet pre-trained CNNs
for JPEG steganalysis,” in IEEE International Workshop on Information Forensics
and Security, Held virtually, December 6–11, 2020.

[25] K. Chubachi, “An ensemblemodel using CNNs on different domains for ALASKA2
image steganalysis,” in IEEE International Workshop on Information Forensics and
Security, Held virtually, December 6–11, 2020.

[26] G. Xu, “1st place solution,” https://www.kaggle.com/c/alaska2-image-
steganalysis/discussion/168548, 2020, [Online; accessed 29-December-2020].

[27] T. Mingxing and V. L. Quoc, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in Proceedings of the 36th International Conference on
Machine Learning, vol. 97, June 9–15, 2019, pp. 6105–6114.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in 2009 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, June 20–25, 2009, pp. 248–255.

[29] M. Boroumand, M. Chen, and J. Fridrich, “Deep residual network for steganalysis
of digital images,” IEEE Transactions on Information Forensics and Security, vol. 14,
no. 5, pp. 1181–1193, May 2019.

[30] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural networks,” in Advances in Neural Information Processing Systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28, 2015.

[31] S. Tan, W.Wu, Z. Shao, Q. Li, B. Li, and J. Huang, “CALPA-NET: Channel-pruning-
assisted deep residual network for steganalysis of digital images,” IEEE Transac-
tions on Information Forensics and Security, vol. 16, pp. 131–146, 2021.

[32] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[33] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion design for stegano-
graphy in an arbitrary domain,” EURASIP Journal on Information Security, Special
Issue on Revised Selected Papers of the 1st ACM IH and MMS Workshop, vol. 2014:1,
2014.

[34] R. Cogranne, Q. Giboulot, and P. Bas, “Steganography by minimizing statistical
detectability: The cases of JPEG and color images,” in The 8th ACM Workshop on
Information Hiding and Multimedia Security, C. Riess and F. Schirrmacher, Eds.
Held virtually: ACM Press, 2020.

[35] L. Guo, J. Ni, and Y. Q. Shi, “Uniform embedding for efficient JPEG steganography,”
IEEE Transactions on Information Forensics and Security, vol. 9, no. 5, pp. 814–825,
May 2014.

[36] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

[37] T. Mingxing and V. L. Quoc, “MixConv: Mixed depthwise convolutional kernels,”
in British Machine Vision Conference, BMVC, September 9–12, 2019.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4510–4520.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
27–30, 2016, pp. 770–778.

[40] Q. Ha, “Single effnet-b0 private LB 0.921: How to modify effnet architecture,”
https://www.kaggle.com/c/alaska2-image-steganalysis/discussion/168542, 2020,
[Online; accessed 29-December-2020].

[41] P. Bas, T. Filler, and T. Pevný, “Break our steganographic system – the ins and
outs of organizing BOSS,” in Information Hiding, 13th International Conference,
ser. Lecture Notes in Computer Science, T. Filler, T. Pevný, A. Ker, and S. Craver,
Eds., vol. 6958, Prague, Czech Republic, May 18–20, 2011, pp. 59–70.

[42] P. Bas and T. Furon, “BOWS-2,” http://bows2.ec-lille.fr, July 2007.
[43] R. Cogranne, “J-MiPOD source code,” personal communication, [e-mail; sent

21-December-2020].
[44] R. Cogranne, V. Sedighi, and J. Fridrich, “Practical strategies for contentadaptive

batch steganography and pooled steganalysis,” in Proceedings IEEE, International
Conference on Acoustics, Speech, and Signal Processing, New Orleans, LA, March
5–9, 2017, pp. 2122–2126.

[45] R. Cogranne, Q. Giboulot, and P. Bas, “The ALASKA steganalysis challenge: A
first step towards steganalysis "Into the wild",” in The 7th ACM Workshop on
Information Hiding and Multimedia Security, R. Cogranne and L. Verdoliva, Eds.
Paris, France: ACM Press, July 3–5, 2019.

[46] A. D. Ker and R. Böhme, “Revisiting weighted stego-image steganalysis,” in
Proceedings SPIE, Electronic Imaging, Security, Forensics, Steganography, and Wa-
termarking of Multimedia Contents X, E. J. Delp, P. W. Wong, J. Dittmann, and
N. D. Memon, Eds., vol. 6819, San Jose, CA, January 27–31, 2008, pp. 5 1–17.

8 APPENDIX
We show the details of the performance of all architectures studied
in this paper for every stego scheme and JPEG quality factor in the
ALASKA II dataset.

http://arxiv.org/abs/1803.04805
http://arxiv.org/abs/1711.09335
http://arxiv.org/abs/1812.02510
https://www.kaggle.com/c/alaska2-image-steganalysis/discussion/168548
https://www.kaggle.com/c/alaska2-image-steganalysis/discussion/168548
https://www.kaggle.com/c/alaska2-image-steganalysis/discussion/168542
http://bows2.ec-lille.fr

Improving EfficientNet for JPEG Steganalysis IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

Model UERD J-UNIWARD J-MiPOD Mixture FLOPs Params Mem
Backbone Surgical Modification QF75 QF90 QF95 QF75 QF90 QF95 QF75 QF90 QF95 (B) (M) (MiB)

B0

None .9513 .9653 .9517 .8766 .8777 .8847 .9820 .9740 .8532 .92601 2.15 4.01 3,354
No stride L0 .9529 .9640 .9539 .8753 .8830 .8881 .9811 .9793 .8630 .92844 8.31 4.01 10,162
No stride L2 .9539 .9637 .9550 .8892 .8944 .9054 .9856 .9839 .8779 .93552 30.73 4.01 24,184

Original pre-stem .9515 .9623 .9481 .8768 .8846 .8941 .9819 .9785 .8701 .92902 7.16 4.04 3,978
Pre-stem IR blocks 𝑡 = 1 .9552 .9662 .9553 .8866 .8915 .8967 .9840 .9792 .8686 .93300 4.98 4.03 6,460
Post-stem IR blocks 𝑡 = 1 .9532 .9649 .9563 .8854 .8925 .9003 .9818 .9794 .8735 .93313 4.88 4.02 6,812
Post-stem IR blocks 𝑡 = 4 .9523 .9640 .9569 .8904 .8973 .9048 .9834 .9815 .8738 .93506 12.15 4.05 13,840
Post-stem ResNet blocks .9552 .9650 .9559 .8932 .9004 .9066 .9830 .9818 .8746 .93623 18.31 4.08 6,488

B4

None .9542 .9624 .9497 .8783 .8788 .8860 .9805 .9759 .8596 .92675 8.20 17.56 6,692
No stride L0 .9608 .9699 .9631 .9069 .9116 .9149 .9879 .9851 .8853 .94408 31.63 17.56 21,484

Post-stem IR 𝑡 = 1 .9587 .9671 .9578 .8956 .8996 .9067 .9810 .9790 .8773 .93713 13.75 17.57 11,924
Post-stem ResNet blocks .9620 .9692 .9585 .8971 .9037 .9097 .9858 .9822 .8821 .94008 44.23 17.72 10,146

B6

None .9534 .9644 .9514 .8848 .8901 .8920 .9808 .9764 .8601 .92998 18.16 40.74 10,868
No stride L0 .9625 .9715 .9628 .9093 .9139 .9168 .9912 .9871 .8881 .94618 69.97 40.74 40,186

Post-stem IR 𝑡 = 1 .9590 .9685 .9542 .8986 .9036 .9072 .9850 .9830 .8841 .93938 25.48 40.77 16,304
Post-stem ResNet blocks .9625 .9707 .9597 .9054 .9073 .9138 .9836 .9813 .8817 .94181 67.07 40.98 16,356

SE-ResNet18 None .9321 .9363 .9298 .8019 .7668 .7534 .9687 .9549 .7615 .87661 9.53 11.26 3,084
No stride/pool L0 .9621 .9686 .9570 .8999 .9104 .9116 .9864 .9853 .8881 .94231 144.89 11.26 8,468

Table 7: wAUC, FLOPs, memory, and the number of parameters of different architectures and surgical modifications in the
ALASKA II dataset.

0 20 40 60 80 100 120 140
FLOPs (B)

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

1-
P

E

B2

B4

B6

B0

B4

B6

B0

B4

B6 SE-ResNet18

B0

B4

B6

Vanilla

Post-stem IR blocks

Post-stem ResNet blocks

No stride @Layer 0

5000 10000 15000 20000 25000 30000 35000 40000
Mem (MiB)

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

1-
P

E

B2

B4

B6

B0

B4

B6

B0

B4

B6

B0

B4

B6SE-ResNet18

Vanilla

Post-stem IR blocks

Post-stem ResNet blocks

No stride @Layer 0

Figure 7: 1 − 𝑃E vs. FLOPs and memory requirements of different surgical modifications in the ALASKA II dataset.

	Abstract
	1 Introduction
	2 Notation
	3 Experimental setting
	4 EfficientNet for JPEG steganalysis
	4.1 EfficientNet and SE-ResNet
	4.2 Transfer learning procedure

	5 ``Surgical modifications'' improve EfficientNet
	5.1 Stem stride ablation
	5.2 Unpooled layers implant
	5.3 Do we gain from ImageNet pre-training of modified CNNs?

	6 Where does EfficientNet shine?
	6.1 Additional experimental setting
	6.2 Training and transfer learning procedure
	6.3 The effect of BOSS-style processing

	7 Conclusion
	Acknowledgments
	References
	8 Appendix

