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Résumé – Si le tatouage numérique existe depuis plus de 30 ans, les solutions les plus populaires actuellement reposent sur des
systèmes d’apprentissages de bout en bout. En prenant comme exemple un système de tatouage à l’état de l’art permettant de
localiser précisemment la génération de paroles, nous montrons que l’opacité du système appris permet de facilement enlever le
signal de tatouage sans aucunement dégrader le contenu. Cette attaque illustre à quel point il est actuellement difficile de formaliser
la contrainte de la sécurité multimedia comme une fonction de coût à optimiser. Il ne faut donc pas oublier que dans le domaine de
la sécurité, les sommets de l’IA cotoient souvent des chutes d’eau.

Abstract – If digital watermarking has been around for over 30 years, the most popular solutions currently rely on end-to-end
machine learning. Taking as an example a state-of-the-art watermarking recognition system that can accurately locate word
generation, we show that the opacity of the learned system allows for easy removal of the watermarking signal without affecting the
content. This attack illustrates how it is currently difficult to formalize the multimedia security constraint as a cost function to be
optimized. Regarding security, it is important to remember that AI summits are often close to waterfalls.

1 Introduction
The first academic paper on Digital Watermarking has been
published in 1993 [17] by Tirkel et al. and since then the
Google Scholar website indexes more than 100k publications
on this topic. The scientific routes of this vast domain have
been numerous, the most popular being (1) the cancellation of
the interference between the host signal and the watermark [6],
(2) the robustness to different operations such as compression,
blurring, noise addition, content processing [8] and geometri-
cal transforms [2], and (3) the tradeoff between robustness and
perceptual distortion [1].

In 2005, Cayre et. al. paved the road for the security analysis
of different watermarking schemes [5]. Contrary to robustness
benchmarks, security attacks consider the role of a potential
adversary, who represents a dynamic actor willing to do his
best to attack the watermarking system by designing potential
exploits such as removing the watermark while minimizing
the distortion, copying the watermark on another content, or
estimating the secret key used during the embedding phase
from a set of watermarked contents.

With the rise of deep learning techniques in 2015, a new
category of watermarking schemes has emerged : in 2018
the HiDDeN scheme [21] proposed end-to-end message em-
bedding and detection for digital images using neural deep
learning. Here the training minimizes an objective function
composed of two terms, one measuring the distortion between
the host and watermarked image, the other measuring the bit
error rate between the embedded and decoded payload. Two
networks are then trained, one to embed the message and ano-
ther to decode it. Thanks to data-augmentation, this generation
of schemes can be robust to different processes because, with
an appropriate architecture, the system can learn to adapt its
embedding strategy to be able to decode the embedded water-
mark.

However, this generation of end-to-end neural watermarking
systems suffers from two important drawbacks :

1. Because the system relies on a large number of parame-
ters, it misses explainability, i.e. the embedding strategy,
which in classical systems consists of designing the
watermark signal, choosing the watermarking domain,
defining the detection function, is not straightforward to
understand.

2. Very often no secret key is used, which means that the ac-
cess to the watermark message is often public, or relies
only on the training procedure, which means that the en-
tropy of the key can be very small [3] and consequently
the system can be very easily attacked.

Note that the difficulty of taking into account security and
explainability constraints is not limited to neural watermar-
king, other ML systems like Large Langage Models [11], clas-
sifiers [10] or distributed learning [20] can also suffer from
security attacks.

In this paper, we analyze the security of a popular and recent
audio watermarking system proposed by Roman et al. [15]
belonging to this new category of ML-driven schemes, and we
show that if the proposed scheme is both extremely performant
in term of robustness and detection accuracy, it is also terribly
easy to remove the watermark with a success rate larger than
99% while decreasing the distortion w.r.t. the original content
at the same time.

The paper is organized as follows, Section 2 presents the
architecture, training strategy, and performances of the target
scheme, Section 3 analyses the features of the watermark using
time-frequency analysis, Section 4 proposes two possible at-
tacks on the scheme, one to remove the watermark signal, and
another to inject it. Finally, Section 5 highlights the dangers of
formalizing watermarking as a machine-learning problem and
proposes different perspectives to cope with this issue.
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FIGURE 1 : Presentation of the AudioSeal system : the two neural structures, the watermark embedder and decoder, are trained
using a double loss composed of two terms. The perceptual loss tends to minimize the distortion between the host and the original
signal, and the localization loss minimizes the binary cross entropy (BCE) between a binary mask representing the localization
of the watermark and the extracted one. Finally, the watermark is detected as soon as the watermark is localized on the whole
test signal. These two neural structures are both similar to auto-encoders, composed of convolutional residual networks with
stride/downsampling or transposed convolutions/upsampling operations, LSTM and FCC.

2 The AudioSeal system
The AudioSeal system [15] finds its legacy in a high fidelity
neural audio coding method called EnCodec [9]. It is designed
as an encoder-decoder architecture that combines transformers,
LSTM, and vector quantization. The whole system, which
includes a network embedding the watermark and a network
localizing the watermark, is illustrated in Figure 1.

For watermarking, the quantization step of EnCodec is not
considered, but the auto-encoder is fine-tuned to modify the
latent representation of the audio signal and to produce a water-
marked signal. Both the encoder and the decoder are modified
by the learning procedure described below.

One interesting feature of the system is the possibility to
localize the watermark, one of its potential applications being
the detection and localization of voice-cloning. In this case, the
synthetic voice is watermarked and the localization enables to
detect where the signal has been tempered. A second network,
localizing the watermarked signal, is consequently trained
jointly with the first one. It is also an encoder-decoder that
predicts a binary mask representing the estimated localization
of the watermark signal at the sample level (usually 1/16k sec).

Note that the watermark is either zero-bit - i.e. a mark is
embedded, not a message - or multi-bit. Without loss of gene-
rality on the security analysis detailed in the next section, we
consider here only zero-bit embedding.

This double structure is trained considering a dual loss :

• A perceptual loss based on the time-frequency loudness,
which computes the difference between the loudness
function1 applied on the original audio signal and the
watermarked signal. The rationale here consists of ex-
ploiting the masking effect of the host signal to increase
the watermark power on loud portions of the host signal.

• A localization loss representing the localization accuracy
of the estimated mask. Here the binary cross entropy
(BCE) between a binary mask indicating where the wa-
termark is embedded and the estimated probability of
the sample to be watermarked is used. The estimated
localization mask is a thresholded version of the locali-
zation probability with a threshold of 0.5.

The watermark detection function computes the average pre-
dicted mask on a given duration and the sample is considered

1This function is defined by the ITU-R BS.1770-4 recommendations [16].

as watermarked if the average estimated mask, denoted D, is
larger than 0.5, which is practically associated with a false
positive rate of 10−3.

The noteworthy robustness of the trained system is largely
due to an extensive data-augmentation policy which includes
14 processes including low/high/band-pass filtering, resam-
pling, echo process, addition of pink or white noise, and AAC
or MP3 encoding applied on 4500 hours of audio samples.
Different masking operations, such as adding silences, copy-
paste, or using the original samples, are also considered data
augmentation.

The benchmark of the system shows remarkable perfor-
mance, surpassing its close competitor WavMark [7]. It indeed
offers 100% detection accuracy when the audio signal is un-
processed, or after processes such as band-pass filtering, echo,
pink noise addition, resampling, ACC and MP3 encoding. Ex-
cept for highpass filtering with an accuracy of 61%, all the
other 14 tested processes offer an accuracy above 91%.

3 Analysis of the embedding scheme

3.1 Discussion
When we first reviewed AudioSeal, we were impressed by its
robustness, especially since besides data augmentation, no-
thing specific was designed at the embedding or detection side
to be robust to synchronization issues linked to echo addition
or cutting, to audio compression, or to noise addition. Be-
fore end-to-end neural watermarking systems such as this one,
specific solutions for these different problems were deployed.

For example, before the deep-learning age, to cope with
audio removal or cutting, specific synchronization patterns or
hidden echos needed to be added as part of the watermark (see
e.g. [18] and [19]), the possibility to localize the watermark at
the sample level usually required the use of advanced coding
systems such as Quantization Index Modulation [6] associated
with error correcting codes [13]. Additionally, these embed-
ding mechanisms needed, to be robust to amplitude scaling,
to be associated with appropriate methods such as the use of
a quantization step following the dynamic of the signal [12].
These contributions often required elaborated mechanisms that
are difficult to simulate with neural networks.

As watermarking connoisseurs, we also noticed that contrary
to the AudioSeal and WavMark systems, "old-school" water-
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(a) Original audio
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(b) Watermarked audio
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(c) Watermark signal
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(d) Attacked audio (watermark removal)

FIGURE 2 : Short Time Fourier Transforms (STFT) of the original (a), watermarked (b), and attacked (d) signals, plus the watermark
(c). Sampling rate = 48 kHz, window = 1024, and for visualization purposes, the maximum power spectrum is clipped between
−20 dB and −70 dB with a reference power of 10. (d) shows the effect of the band-stop filter to remove the watermark (zoom-in).

marking systems use an extra parameter, namely a secret key,
which enables to increase the security level of the system pre-
venting an adversary from removing the watermarked content
with very low distortion or to copy the watermark elsewhere.
These attacks, if possible, would cause a genuine audio si-
gnal to be detected as generated from voice cloning, or on the
contrary, cause a generated signal to be detected as genuine.

The absence of the security constraint is also reflected by
the training procedure which takes into account only two
constraints objectified by the two losses : a loss on the percep-
tual distortion, a loss on the robustness (the BCE) associated
with appropriate data-augmentations, but no formal loss on
security which is an inherent constraint in watermarking [4].

It consequently came to our mind that, in the end, Audio-
Seal might be less elaborate than expected, and we decided
to pursue a small time-frequency analysis of the watermarked
signals.

3.2 Time Frequency Analysis
Using the default reference implementation, we visualize the
Short Time Fourier Transform (STFT a.k.a. Spectrograms) of
the original audio, watermarked audio and watermark signal,
which are presented respectively on Figure 2 in plots a, b and c.

Using the appropriate rendering (power spectrum in the
range −20 dB and −70 dB), we can immediately notice that
the watermark signal is a very narrow band-pass signal with
a power positively correlated with the host power, and with a
frequency around 1.1 kHz.

These two observations are coherent with the facts that :
(i) The watermark is not audible : to take advantage of the
masking effect, one has to scale the watermark power with
respect to the host power ; (ii) the robustness of the system is
rather low when facing high-pass filtering (see Section 2) : the
watermark has a strong low-pass component.

Based on this simple observation, we are able to design two
rather powerful attacks described in the next section.

Ratio Ratio
of Detected Contents of PESQ≥ 4

Watermarked 100% 45.0%
Removal attack 0.6% 95.0%

Copy attack 81.1% 87.7%

TABLE 1 : Performances of the two presented attacks.

4 Two possible attacks

4.1 Removal attack
The attack is simple and consists of applying a Butterworth
band-stop filter of order 5 between 1 kHz and 1.2 kHz.

We conducted this attack on 1135 voice samples coming
from Kaggle2 and the success rate (detection score D > 0.5)
equals 99.4%. To evaluate the perceptual distortion of this
removal attack, we also computed the Perceptual Evaluation
of Speech Quality Wide-Band (PESQ-WB) score [14] which,
when higher than 4.0, is associated with inaudible distortion.
To compute the score, all files are downsampled to 16 kHz.
Results are presented in Figure 3 and Table 1. If on the test
samples, 45.0% of the watermarked samples are above this
threshold, 95.0% of attacked samples are qualified. The in-
crease of this rate plainly confirms that we successively remo-
ved the watermark signal, a PESQ-WB of 4.5 representing no
distortion between the original and tested signal.

4.2 Copy attack
To inject a watermark-like signal into the original audio, we
simply modified the magnitude of its Fourier transform by
enhancing the frequency f = 1.1 kHz. We increased the ma-
gnitude at frequencies +f and −f by a constant value c = 10

2https://www.kaggle.com/datasets/farneetsingh2/audio-files
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FIGURE 3 : Detection score VS distortion score (PESQ-WB)
for watermarked and attacked contents after a removal attack
and a copy attack.

which amounts to adding a cosine of frequency f and ma-
gnitude c to the signal. While a more clever approach could
also modify the phase, our simple attack reaches 81.1% suc-
cess rate of being detected as watermarked, demonstrating its
effectiveness.

Moreover, 87.7% of attacked samples achieve a PESQ-WB
score above the threshold 4, which is a significant improvement
compared to the results obtained on the watermarked content.

5 Learned lessons
Mixing Machine Learning and Security is not an easy task.
Using as a toy example a popular audio watermarking scheme
we show that a very simple time-frequency analysis and basic
processes can be designed to remove or copy the watermark
with a very low distortion budget.

When considering security, i.e. the fact that an adversary can
actively try to break the system, this end-to-end optimization
process is difficult to design since this constraint is difficult to
formalize as an objective function when the attack surface is
too wide. This is for example the case in watermarking, with
synchronization, estimation, copy, removal attacks, ... Note
that in steganography, the security constraint is easier to forma-
lize since the detectability can be objectified by a discriminator,
or for example by a distance between the distribution of Cover
and Stego contents.

Another possibility can also stem from the learning stra-
tegy : supposing that the used augmentations are diverse and
exhaustive enough, the learning should be done concerning
the most harmful augmentation, i.e. the wort case attack, and
not w.r.t. the average set of augmentations. As highlighted in
Section 2, the studied system was very robust on average, but
not very robust to high-pass filtering. This trade-off induced a
security hole.

Last and least : when related to watermarking, we strongly
believe that security cannot be obtained without the use of a
secret key : if no key is used, the detector is similar to a public
system which can be openly attacked, for example with oracle
attacks.
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