
DeepFake Detection based on Noise Residuals

Minh Thong DOI1,2 Jan BUTORA2 Vincent ITIER1,2 Jérémie BOULANGER2 Patrick BAS2

1IMT Nord Europe, Institut Mines-Télécom, Centre for Digital Systems, F-59000 Lille, France
2Centre de Recherche en Informatique, Signal et Automatique de Lille, Avenue Henri Poincaré, 59655 Villeneuve d’Ascq, France

Résumé – Les « deepfakes » posent des problèmes majeurs, notamment en ce qui concerne la fraude, la désinformation et la
falsification de preuves. Comme les deepfakes deviennent de plus en plus répandus, il est essentiel de disposer de méthodes de
détection efficaces. Nous présentons DJIN [5], un modèle de détection des deepfakes qui conserve les composantes de bruit en
évitant les couches de mise en commun dans les étapes initiales. Pré-entraîné sur ImageNet pour la stéganographie en utilisant
la version JIN, DJIN surpasse CoDE [2] et CLIP [7] et est le meilleur parmi tous les détecteurs mentionnés pour l’ensemble de
données In-Distribution. DJIN est très efficace pour traiter des images de haute qualité et des images de différentes tailles. Étant
donné que les générateurs de deepfake produisent généralement des résultats de haute qualité, une analyse d’explicabilité révèle que
DJIN exploite le bruit de l’image en se concentrant sur les zones plus sombres dans les images réelles et sur les zones plus claires
dans les images générées.

Abstract – Deepfakes pose major challenges, especially regarding fraud, misinformation, and evidence tampering. As deepfakes
become more prevalent, effective detection methods are essential. We introduce DJIN [5], a deepfake detection model that retains
noise components by avoiding pooling layers in the initial stages. Pre-trained on ImageNet for steganography using the JIN version,
DJIN outperforms CoDE [2] and CLIP [7] and is the best among all detectors mentioned for the In-Distribution dataset. DJIN
is highly effective in handling high-quality images and processing images of various sizes. Since deepfake generators typically
produce high-quality outputs, an explainability analysis reveals that DJIN leverages image noise by focusing on darker areas in real
images and brighter areas in generated ones.

1 Introduction
Deepfakes have been developing dramatically in recent

years, from the generation of realistic human faces to the
creation of convincing audio and video content. Since the in-
troduction of GANs [8] (Generative Adversarial Networks) in
2014, the quality of the generated contents has been increasing
exponentially, and the ability to detect fake content has become
a real challenge. Although deepfakes provide a powerful tool
for creating realistic contents, which can be used mainly for
entertainment nad marketing purposes, malicious use of deep-
fakes can have serious consequences, such as the spread of
fake news, the creation of fake evidence, or the impersonation
of individuals.

While deepfakes are widely accessible to fit the needs of the
general public, it raises the an important ethical question: how
can we trust the content that we see and hear?

Generated images can be distinguished through 2 main com-
ponents: the noise residual and the semantic features. Gener-
ators are trained to recreate images by learning patterns and
features from the training data, rather than understanding the
physical world. These drawbacks can still be surpassed with
the advance of deepfakes models. However, any generator
will leave a noticeable trace inherent by the generation process
in the output image, even when it is invisible to the human
eyes [6]. These traces are different from typical noise in im-
ages which allows us to detect generated images. In some
cases, pre or post-processing techniques can have a negative
impact on the noise residual as it removes some high-frequency
components in the image which are essential for detection.

The recent benchmark from PEReN outlines 3 state-of-the-
art models for deepfake detection: CoDE [2], Corvi et al. [6],

CLIP [7]. Corvi et al. is a CNN based on ResNet50 and
which has the particularity to avoid down-sampling in the
first layer, as down-sampling can reduce the performance of
the model [11]. CLIP features, used initially for computer
vision tasks to provide an embedding where image textual
descriptions and image contents are close using a contrastive
procedure, are in [7] used as inputs of a classifier to detect
generated images. CoDE, built on a Vision Transformer, ana-
lyzes relationships between different image regions to detect
anomalies in generated images. A contrastive learning strategy
is used in order to find an embedding which brings closer the
class of generated images or the class of natural images, but
also spread apart the two classes. Local and global features
are used.

In this paper, we present the DJIN deepfake detector [5], a
simple and efficient convolutional neural network that extracts
the noise residual in the image. The most important question
that we want to answer is: what are the advantages and draw-
backs of noise-based detectors compared to semantic-based
detectors? To answer that question, we compare DJIN’s perfor-
mance to other models using different datasets: our validation
dataset and an out-of-distribution dataset. We show that if
we include many different generators in our training data, the
DJIN detector may be the best option.

The paper is organized as follow: in the next section, deep-
fake detectors and image datasets are described. Section 4
analyzes the results obtained on in-distribution and out-of-
distribution datasets, and Section 5 highlights the advantages
and drawbacks of noise-based detectors compared to semantic-
based detectors.

1

mailto:minh-thong.doi@imt-nord-europe.fr
mailto:jan.butora@cnrs.fr
mailto:vincent.itier@imt-nord-europe.fr
mailto:jeremie.boulanger@univ-lille.fr
mailto:patrick.bas@cnrs.fr
https://www.peren.gouv.fr/perenlab/2025-02-11_ai_summit/


2 The DJIN architecture

Conv layers
Conv layers

before
subsampling

Params
Receptive Field

before sub Receptive Field
Pretrained
database

DJIN 26 14 5.3M 31 179
ImageNet

for steganography

Corvi et al. 17 4 23.5M 15 113
ImageNet
for object

classification

Table 1 – Comparison of DJIN and Corvi et al. architectures
in terms of convolutional layers, parameters, receptive fields,
and training datasets.

Steganalysis detectors based on deep learning have been
extremely successful in detection of imperceptible changes
in the noise component of digital images as it is the case for
steganalysis.

We select the JIN detector, which is a specifically initialized
SRNet [4], a CNN designed for steganalysis. One specificity
of the SRNet is that the first 12 convolutional layers are not
using any pooling, thus allowing the detector to focus on noise
components. The acronym JIN (J-UNIWARD ImageNet) then
means that it has been pre-trained on almost a million images
embedded with steganography 1, which has been shown to
provide a very good initialization strategy in tasks related to
steganalysis and image forensics [5]. By using JIN to initialize
our training procedure, we consequently enforce the analysis
of noise residuals over the image semantic. As we can see
in Section 4.3, our explainability analysis confirms this ratio-
nale. Note also that, as a CNN, this model can process during
inference images of any size without resizing, preserving crit-
ical details and high-frequency components. It is important
to avoid as resizing may erase high-frequency components in
the image [6]. We can also see in Table 1, Corvi et al. has
4.5 times more parameters than DJIN, which may cause mem-
ory issues when training with large images on hardware with
limited resources.

3 Experimental setup

3.1 Image datasets
We consider two datasets in this work, ID (in-distribution)

dataset, used for training and testing the detectors, and OOD
(out-of-distribution) dataset to test the detectors on images
generated with previously unseen generators.

The real images in the ID datasets are QF 100 JPEG images
of size at least 2048 × 2048 downloaded from Flickr. We
randomly select 9000 images and crop them to size 2048 ×
2048. Subsequently, we split them into training and testing
sets of 7200, and 1800, respectively. Note that we do not use
a validation set as we do not modify any hyperparameters of
any of the detectors.

For the generated images of the ID dataset, we use the Syn-
thbuster dataset [1], consisting of 9 image generators (DALL·E
2, DALL·E 3, Firefly, Glide, Midjourney-v5, and four Stable

1. The JIN initialization weights are available at https://
janbutora.github.io/assets/scripts/JIN_SRNet.zip

Diffusion versions: 1.3, 1.4, 2, XL) each providing 1000 im-
ages of variable sizes. We use 800 images of each generator
for the training, and the rest for testing.

To evaluate the detectors on unseen generators, we manually
generated images from 7 different generators to form the OOD
dataset, namely Genmo, Bing Creator, Deep Dream, Google
SGE, Meta AI, Runway, and Shutterstock. We generated
roughly 100 images for each generator, with an exception at
Deep Dream where we only used 41 images. The OOD images
have variable size between 700× 700 to 1600× 1600.

3.2 Detectors
We will demonstrate in this work that steganalysis detectors

can be also very efficient in the detection of generated images
since we can assume that the noise component of such images
has different properties than natural ones.

The DJIN, CoDE, Corvi et al., and CLIP models are then
fine-tuned on the ID dataset. The training process is conducted
with a batch size of 64, an initial learning rate of 10−3, a
weight decay of 2× 10−4 for 500 epochs, with early stopping
when the learning rate drops below 2×10−7. We are using Re-
duceLROnPlateau for the learning rate scheduler and Adamax
optimizer.

For Corvi et al. [6], we use the ResNet50 with a dropout rate
0.5, a padding of 1, and a stride of 1 in the first convolutional
layer, which avoids down-sampling in the first layer [9].

For CoDE [2] and CLIP [7], the required input size is fixed
at 224× 224 due to their architectural constraints. For a fair
comparison, we train all the detectors at this image resolu-
tion. To increase the amount of training data, we therefore
include several augmentations. First, we apply D4 transfor-
mations. Next, for DJIN and Corvi et al., one of the fol-
lowing transformations is used (each with 25% probability):
RandomResizeCrop, RandomCrop, Resize, and a composi-
tion of resizing (with a random factor between 0.5 and 2)
followed by RandomCrop. For CLIP and CoDE, we aim to
preserve the full content of the image; therefore, only resizing
using Lanczos4 interpolation is applied. Furthermore, with a
50% probability, we apply JPEG compression with a random
Quality Factor (QF) between 40 and 100. The final image is
then normalized depending on the normalization of the pre-
trained model (DJIN divides the value by 255, Corvi et al.
and CoDE use ImageNet normalization). Note that while the
real images are already JPEG compressed with QF 100, these
augmentations will, in many cases, destroy detectable traces
of this compression, thus avoiding a possible bias between the
real and generated images. However, in future work, we will
explore datasets of uncompressed images.

Note that while Corvi et al. and DJIN can train on larger
images, we do not use this strategy. However, we will show
that testing these detectors on the images with their original
resolutions can bring additional performance boosts.

4 Results
We now present the results of the detectors on the ID, and

OOD datasets. We consider uncompressed images, and JPEG
compression with three QFs: 40, 65, and 90. As we decrease
the quality factor, we can expect more high-frequency compo-
nents to be removed from the image. Consequently, we expect

2

https://janbutora.github.io/assets/scripts/JIN_SRNet.zip
https://janbutora.github.io/assets/scripts/JIN_SRNet.zip
https://albumentations.ai/docs/examples/example_d4/


Figure 1 – ROC curves of DJIN, CoDE, Corvi et. al., and CLIP on uncompressed ID dataset (top left), and compressed with QF 90
(top right), 65 (bottom left), and 40 (bottom right). We include DJIN and Corvi et. al. results on original resolutions.

the noise-based detectors (DJIN, Corvi et al.) to have more dif-
ficulties to detect the deepfake images than the semantic-based
detector (CLIP and CoDE).

4.1 In-distribution dataset
Based on the ROC curves in Figure 1, we can observe that

DJIN has the second best performance for uncompressed and
QF 90 images. For the lower QFs, DJIN becomes less efficient
than CLIP and CoDE, with bigger difference at QF 40. We
note that Corvi et al. has consistently the best performance.

However, as mentioned before, the CNN-based detectors
can test images of any size, without refining the detectors.
We observe significant gains for both DJIN and Corvi et al.
when testing on images with their original sizes. Notably,
DJIN and Corvi et al. outperforms other detectors considered,
demonstrating a big advantage of CNN-based detectors in
terms of performance and flexibility.

4.2 Out-of-distribution dataset
With the OOD dataset, we test on 7 previously generators,

and the results are shown in Table 2. CLIP and DJIN show
the best performance among the models, achieving 89.9%
and 89.12% accuracy respectively for uncompressed images,
compared to 83.97% for Corvi et al., and 81.8% for CoDE.
However, as the quality factor decreases, DJIN and Corvi et
al.’s accuracy drop more quickly than other models while CLIP
maintains the accuracy among different quality factors. When
we test DJIN with the image size of 512x512, the accuracy
also improves but with original images, the accuracy drops
significantly. It still needs further investigations to understand
the reason behind this drop. However, the results suggests
that for noise-based detectors, bigger images can provide more
useful information about the noise component to detect the
deepfake images.

0 50 100 150 200 250
Pixel Value

0.00

0.01

0.02

0.03

0.04

0.05

Midjourney
Real

0 50 100 150 200 250
Pixel Value

0.000

0.005

0.010

0.015

0.020

0.025 MidJourney
Real

Figure 2 – Probability of the top 1% most influential pixels
according to Integrated Gradients w.r.t the total pixels of each
value (0-255) (top left). Histogram of pixels’ values in real
images and Midjourney (top right). Integrated Gradients of
midjourney sample image (bottom left), real image (bottom
right).

4.3 Explainability
We want to understand the behavior of DJIN when detect-

ing the deepfake images. We use the Integrated Gradients
(IG) method to compute the importance of each pixel in the
image which explains the contribution of input’s features to
the prediction of the model [10]. We compute the IG for the
real images and the Midjourney generator, and only choose
1% most influential pixels. The results are shown in figure 2.
We can see that the higher pixel values are more important for
the DJIN detector in making the decision as there is a linear
relation between the pixel values and the noise variance [3].
For the real images, the model has more focus on dark areas

3



Out-Of-Distribution

DJIN (train on 224x224) alpha_genmo bingcreator deepdream google_sge metaAI runway shutterstock Accuracy (224/512/original)
Uncompressed Real 3 15 11 15 20 10 0 89.12% / 90.74% / 87.5%

Fake 97 85 30 89 80 125 100
QF = 90 Real 14 16 9 14 42 10 3 84.12% / 86.18% / 80.29%

Fake 86 84 32 90 58 125 97
QF = 65 Real 23 41 15 33 37 16 2 75.44% / 81.03% / 72.35%

Fake 77 59 26 71 63 119 98
QF = 40 Real 28 16 17 44 32 17 3 76.91% / 78.24% / 72.21%

Fake 72 84 24 60 68 118 97
Corvi et al. (train on 224x224) alpha_genmo bingcreator deepdream google_sge metaAI runway shutterstock Accuracy (224)
Uncompressed Real 5 5 8 41 36 14 0 83.97%

Fake 95 95 33 63 64 121 100
QF = 90 Real 12 6 10 40 47 15 0 80.88%

Fake 88 94 31 64 53 120 100
QF = 65 Real 20 18 15 50 44 21 0 75.29%

Fake 80 82 26 54 56 114 100
QF = 40 Real 26 15 20 67 42 30 1 70.44%

Fake 74 85 21 37 58 105 99
CoDE (train on 224x224) alpha_genmo bingcreator deepdream google_sge metaAI runway shutterstock Accuracy (224)

Uncompressed Real 12 15 6 49 24 15 3 81.8%
Fake 88 85 35 55 76 120 97

QF = 90 Real 17 13 7 51 22 19 4 80.4%
Fake 83 87 34 53 78 116 96

QF = 65 Real 17 13 5 47 15 19 1 82.8%
Fake 83 87 36 57 85 116 99

QF = 40 Real 31 20 12 50 22 29 1 75.7%
Fake 69 80 29 54 78 106 99

CLIP (train on 224x224) alpha_genmo bingcreator deepdream google_sge metaAI runway shutterstock Accuracy (224)
Uncompressed Real 7 3 6 35 12 6 0 89.9%

Fake 93 97 35 69 88 129 100
QF = 90 Real 11 3 8 26 7 7 0 90.9%

Fake 89 97 33 78 93 128 100
QF = 65 Real 22 7 12 49 20 14 0 81.8%

Fake 78 93 29 55 80 121 100
QF = 40 Real 22 11 8 36 14 11 0 85.0%

Fake 78 89 33 68 86 124 100

Table 2 – Performance comparison of DJIN, Corvi et al., CoDE, and CLIP on out-of-distribution datasets with different JPEG
compression levels. All models are trained on 224x224 resolution. The accuracy is calculated on 224x224 images for all models,
and also on 512x512 and original images for DJIN.

while the Midjourney generator has more focus on bright areas.
This can be explained as the generator usually provides studio
quality images so it will be brighter than the real images (top
right of figure 2 where we can see a lot of dark areas in the real
image). We notice also that the classifier focuses on image
noise, not on the content.

5 Conclusion
This work presents a deepfake detector that is based on

noise residuals. We compare the performance of DJIN with
that of various state-of-the-art models across different scenar-
ios. DJIN stands out as an optimal solution in terms of resource
efficiency and flexibility, as it has a significantly lower number
of parameters than Corvi et al. (5.3M vs. 23.5M parameters).
It takes only 7 GB of VRAM to train it on a single GPU with
an image size of 224 x 224. This model can perform better
when testing with larger images. While experimental results
vary across conditions, DJIN performs best with high-quality
images. Meanwhile, semantic-based detectors like CLIP and
CoDE offer better consistency across different JPEG compres-
sion levels due to their contextual approach. Our findings
suggest that noise- and semantic-based detectors complement
each other, providing a balanced solution that mitigates their
respective limitations.

6 Acknowledgement
This work was also supported by a French government grant

managed by the Agence Nationale de la Recherche under the
France 2030 program, reference ANR-22-PECY0011 and the
project ANR-23-IAS4-0004.

References
[1] Quentin Bammey. Synthbuster: Towards detection of diffusion model

generated images. IEEE Open Journal of Signal Processing, 5:1–9,
2024.

[2] Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi,
Alessandro Nicolosi, and Rita Cucchiara. Contrasting Deepfakes Dif-
fusion via Contrastive Learning and Global-Local Similarities. In Pro-
ceedings of the European Conference on Computer Vision, 2024.

[3] Patrick Bas. Steganography via cover-source switching. In 2016 IEEE
International Workshop on Information Forensics and Security (WIFS),
pages 1–6, 2016.

[4] Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual
network for steganalysis of digital images. IEEE Transactions on Infor-
mation Forensics and Security, 14(5):1181–1193, 2019.

[5] Jan Butora, Yassine Yousfi, and Jessica Fridrich. How to pretrain for
steganalysis. In Proceedings of the 2021 ACM Workshop on Information
Hiding and Multimedia Security, page 143–148, New York, NY, USA,
2021. Association for Computing Machinery.

[6] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi,
Koki Nagano, and Luisa Verdoliva. On the detection of synthetic images
generated by diffusion models. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[7] Davide Cozzolino, Giovanni Poggi, Riccardo Corvi, Matthias Nießner,
and Luisa Verdoliva. Raising the bar of ai-generated image detection
with clip, 2023.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

[9] Diego Gragnaniello, Davide Cozzolino, Francesco Marra, Giovanni
Poggi, and Luisa Verdoliva. Are gan generated images easy to detect? a
critical analysis of the state-of-the-art, 2021.

[10] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks, 2017.

[11] Yassine Yousfi, Jan Butora, Eugene Khvedchenya, and Jessica Fridrich.
Imagenet pre-trained cnns for jpeg steganalysis. In 2020 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), pages
1–6, 2020.

4


	Introduction
	The DJIN architecture
	Experimental setup
	Image datasets
	Detectors

	Results
	In-distribution dataset
	Out-of-distribution dataset
	Explainability

	Conclusion
	Acknowledgement

