
ImageNet Pre-trained CNNs for JPEG Steganalysis
Yassine Yousfi

Department of ECE
Binghamton University

yyousfi1@binghamton.edu

Jan Butora
Department of ECE

Binghamton University
jbutora1@binghamton.edu

Eugene Khvedchenya
ODS.ai

eekhvedchenya@gmail.com

Jessica Fridrich
Department of ECE

Binghamton University
fridrich@binghamton.edu

Abstract—In this paper, we investigate pre-trained computer-
vision deep architectures, such as the EfficientNet, MixNet, and
ResNet for steganalysis. These models pre-trained on ImageNet
can be rather quickly refined for JPEG steganalysis while offering
significantly better performance than CNNs designed purposely
for steganalysis, such as the SRNet, trained from scratch. We
show how different architectures compare on the ALASKA
II dataset. We demonstrate that avoiding pooling/stride in the
first layers enables better performance, as noticed by other
top competitors, which aligns with the design choices of many
CNNs designed for steganalysis. We also show how pre-trained
computer-vision deep architectures perform on the ALASKA I
dataset.

Index Terms—Steganography, steganalysis, convolutional neu-
ral network, pre-trained models, EfficientNet, MixNet, SRNet,
transfer learning

I. INTRODUCTION

Steganography is a form of covert communication in which
messages are hidden inside other objects overtly communi-
cated to the recipient. The objective of steganalysis is to
establish the use of steganography. As more advanced stegano-
graphic techniques appeared, steganalysts turned to machine
learning to train detectors to recognize subtle but anomalous
higher-order statistics left behind by steganography. This was
initially executed by representing images with “features” (vec-
tors) hand-designed [1], [2] to be sensitive to steganographic
embedding changes and then training a classifier to recognize
the discrepancy between the features of cover and stego
images. Linear classifiers [3], support-vector machines [4], and
ensembles of simple detectors [5] were proposed to handle this
task. This approach culminated in what is recognized today as
the so-called rich media models [6], [7], [8].

Five years ago, this well-established approach began being
replaced by an even more automatized process based on
convolutional neural networks (CNNs). The images them-
selves, rather than their representations, are fed to the network,
which learns how to internally represent and classify them via
a parametrized hierarchical structure that can be optimized
with an efficient gradient-based optimization algorithm. Today,
CNNs firmly established themselves as far more powerful
then classifiers trained on rich representations. Initially, either
fixed high-pass filters or learnable filters but pre-initialized
to those from the Spatial Rich Model [6] or to DCT bases
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have been used in the first convolutional layer [9], [10], [11],
[12]. This element was deemed as essential and beneficial for
the network to converge and perform well. Researchers ex-
perimented with different activation functions, pre-processing
modules [13], [14], unpooled layers [11], [15], depth-wise
separable convolutions [16], multi-level pooling [17], residual
shortcut connections [15], [18], dense connections [19], hybrid
designs [20], parallel subnets [13], [20], wider separable archi-
tectures [16], while some introduced specialized steganalysis
concepts into CNNs, such as the JPEG phase [14] or the
reference channel [21].

In this paper, we share our experience with recent computer-
vision models originally pre-trained on ImageNet [22] for
image classification, which were refined for steganalysis in
the JPEG domain. This approach was predominantly employed
by virtually all top performers during the recent steganalysis
competition ALASKA II hosted on Kaggle. While our expo-
sition is inevitably limited in many ways due to the very short
time between the competition end and the paper submission
deadline, we strongly believe that the insight we obtained
will be valuable to practitioners and researchers. Pre-training
exposes the CNN to more than a million images from a very
large number of sources, extremely diverse processing, and
diverse content. As such, the filters in their convolutional
layers are able to recognize a great diversity of shapes,
textures, noise patterns, processing and image-development
traces, which are exactly the attributes that modulate the stego
signal of modern content-adaptive steganographic schemes.
Detecting stego noise is essentially equivalent to detecting
traces of the content itself.

This approach is fairly new to the steganalysis literature.
In fact, to the best of the authors knowledge, only one
published paper [23] uses an ImageNet pre-trained model for
steganalysis in spatial domain but does not compare it to any
other steganalysis detector, nor uses a standard dataset.

In the next section, we introduce ImageNet models and
methods of transfer learning for steganalysis. Section III
describes the experimental setup, Section IV-A lays out the
paper’s main experimental results, Section V briefly describes
the ALASKA II competition and our prize winning submis-
sion. The paper is concluded in Section VI.

II. IMAGENET MODELS

ImageNet is one of the largest computer vision bench-
mark databases. Most computer vision research uses the Ima-



geNet Large Scale Visual Recognition Challenge (ILSVRC)
“trimmed” version of 1,000 classes and approximately 1.3
million training images.

This paper experiments with CNNs originally trained on
ImgeNet and with a model scaling parameter that controls
the size of the network: ResNet [24] and its variants, TRes-
Net [25], SK-ResNeXt [26], and DenseNet [27], as well as
the EfficientNet [28] and MixNet [29] (MN).

In addition to recent advances in neural architectures bench-
marked on ImageNet, a large body of work is dedicated
to transfer learning, i. e., using ImageNet pre-trained neural
networks and fine-tuning either the entire network or a subset
of the network on a new task. A recent study of transfer
learning of ImageNet models [30] shows that better ImageNet
models transfer better to new tasks.

A. Steganalysis transfer learning

Steganalysis transfer learning was done using two pipelines:
(A) A pipeline inspired by Alex Shonenkov’s public baseline,1

using cross-entropy loss and the AdamW optimizer with 10−2

weight decay, for 50 epochs using “ReduceLROnPlateau”
Learning Rate (LR) scheduler monitoring the validation loss
with a start LR of 10−3, a patience of 2 epochs, a multiplier
of 1/2, and D4 training augmentation. (B) A slightly different
pipeline using a multi-head classifier (Binary and Multi-
class heads) and cosine annealing LR decay from 10−3 to
10−5, for 100 epochs, and using coarse dropout with a small
probability and a maximum number of zeroed regions set to 1,
in addition to D4 augmentations. All training augmentations
were performed using the Albumentations library [31].

Targeted experiments indicated that the most influential
hyper-parameters in fine-tuning ImageNet models using both
pipelines are the LR and the weight decay, which have to
be adjusted for each optimizer. Due to time constraints, we
did not perform a rigorous search for optimal settings but
early experiments showed that (A) and (B) worked rather well
for various CNNs although (B) gave slightly better results for
larger architectures.

Networks larger than 10M parameters were trained using
Automatic Mixed Precision (AMP), from NVIDIA’s apex
library.

Note that the refining detailed here has been used on the
ALASKA II training dataset described in Section III. It is
possible that it may need to be adjusted for best results
when refining other pre-trained models on other datasets, stego
methods, and a different set of JPEG quality factors.

III. EXPERIMENTAL SETUP

The majority of experiments reported upon in this paper
were executed on the training dataset made available by the
organizers of ALASKA II. It contains 3×25,000 different
cover images compressed with quality factors 75, 90, and
95, and the same amount of stego images embedded with J-
UNIWARD [32], J-MiPOD [33], and UERD [34], making the

1https://www.kaggle.com/shonenkov/train-inference-gpu-baseline

training set size 4×75,000 images. Per the description of the
organizers, the payload embedded in each image was scaled
so that all images are approximately equally difficult to detect,
with comparatively smaller payload embedded in smooth im-
ages and larger payloads embedded in highly textured or noisy
images. The average payload embedded across the database
was 0.4 bits per non-zero AC DCT coefficient (bpnzac).

Unless mentioned otherwise, for the purpose of the com-
petition the training set was randomly split into three disjoint
subsets while making sure each cover image was in the same
subset as its three stego versions: the training, validation, and
testing sets with 4×3×22,000, 4×3×1,000, and 4×3×2,000
images, respectively.

Most experiments were evaluated with a performance mea-
sure derived from the receiver operating characteristic curve
(ROC) defined as the probability of correct detection of stego
image as a function of the probability of false alarm, PD(PFA):
the weighted area under the ROC (wAUC) used in ALASKA
II and defined as

wAUC = (2A0.4 +A1)/3, (1)

where A0.4 is the area between the ROC, the two horizontal
lines defined by PD = 0 and PD = 0.4 and the vertical line
PFA = 1, and A1 is the area between the ROC, the horizontal
line defined by PD = 0.4 and the vertical line PFA = 1.
Experiments in Section IV-D are evaluated using the missed
detection rate MD5 at false alarm 0.05, MD5 = 1−PD(0.05),
and the minimum average total error under equal priors PE =
min 1

2 (PD(PFA)+PFA), for consistency with the ALASKA I
competition results.

IV. RESULTS

A. Baseline

As a baseline for the current state of the art in steganalysis
of JPEG images, we selected the three-channel SRNet [15]
(Y CrCb), an architecture specifically designed for steganaly-
sis. It was trained from randomly initialized weights on QF75
using standard hyper-parameters and the training schedule
described in [15] with a batch size of 64. Then, it was fine-
tuned on QF90 and QF95 separately for 160, 000 iterations
with LR 10−4 for the first 100, 000 iterations, which was then
divided by 2 after each 20, 000 iterations.

Another version of SRNet has also been studied in an at-
tempt to improve the performance: refining the trained SRNet
on QF75 without the cover–stego pair constraint (PC). This
was done by training on each QF for 200, 000 iterations with
LR 10−4 for 20, 000 iterations, 10−3 for 60, 000 iterations,
and for additional 3× 40, 000 iterations after dividing the LR
by 10, 5, 2.

The wAUC for both SRNet versions is shown in Table I bro-
ken up by quality factors and stego methods. The improvement
due to refinements is especially significant for the two larger
quality factors and for UERD and J-UNIWARD. We note
that all SRNet versions were trained on non-rounded Y CrCb
values after decompressing the JPEG image. We strongly
hypothesize that the improvement due to refining without pair

https://www.kaggle.com/shonenkov/train-inference-gpu-baseline


constraint is due to restoring batch independence together with
using Batch Normalization layers. Pair constraint however,
helps convergence early in training from scratch. Also note
that SRNet trained on all three quality factors together under-
performed compared to dedicated SRNet’s trained on each QF
as the range is larger compared to those studied in [35].

B. ImageNet models

In Table II, we show the wAUC for five different pre-trained
models also broken up by quality factor and stego method. All
models were refined as explained in Section II-A, EfficientNet
B7* was trained using pipeline (B) while the other models
were trained using pipeline (A). Another round of refinement
was performed with the Mish activation function [36] replac-
ing the original Swish activation function [37]. The boost
in wAUC provided by training on non-rounded pixel values
consistently ranged between 0.05−0.1, while the boost due to
Mish activation is visualized in Figure 1. Unlike SRNet, the
pre-trained models trained on all three QFs at once performed
similarly as models dedicated to a specific QF.

The pre-trained models offer markedly better performance
than the SRNet on all quality factors and all stego methods.
Also, deeper models generally achieve better detection accu-
racy. Figure 1 shows the performance in terms of the wAUC
as a function of the model size (the number of parameters)
across all stego methods and then separately for each stego
algorithm. The graphs confirm that “bigger and deeper” is
generally better. When viewing the performance for each stego
algorithm, however, one can see that the models’ accuracy
varies quite a bit. For UERD, MixNet-xL reaches basically
the same performance as the much bigger B6 or B7*. For J-
UNIWARD and J-MiPOD, the SRNet no PC has a competitive
performance and even outperforms MixNet-S and B2. The
boost due to the Mish activation is mostly for J-UNIWARD
and J-MiPOD. This complementary performance of the models
is good as they will likely boost each other in an ensemble.

C. Pooling/stride ablation

Targeted experiments using different CNN architectures
show that the resolution of the first layers is important for
the final accuracy. In fact, it is well established within the
steganalysis community that CNNs for steganalysis should
not perform any downsampling in the first few layers [11],
[15]. Figure 2 shows how models building on the ResNet stem
(conv 7 × 7 with stride 2 followed by a 3 × 3 max pooling
layer with stride 2) compare to the SRNet noPC as a baseline.
Architectures with too much downsampling in the first layers
do not follow the trend in Figure 1, and are generally weaker
than the baseline. Figure 2 also shows two different trends,
DenseNet and (SK-)ResNeXt families seem to perform better
than ResNet and T-ResNet families. We hypothesize that this is
due to the fact that DenseNet-121 and (SK-)ResNeXt-50 have
a depth of 256 at the output of the first block after the stem
(second highest resolution) while ResNet-34 and T-ResNet-M
have a depth of 64.

Next, we compare within a single architecture (MixNet-S)
how stride and max pooling in the stem affect the performance.
Table III shows the great benefit of removing the stem’s stride.
Table III also shows how MixNet-S performs with different
stem downsampling settings when removing the stride and
adding an avg. pooling layer. The performance drops consid-
erably despite the same “resolution” as the vanilla MixNet-S
stem. The drop is due to the low-pass nature of the average
pooling layer, which suppresses high frequency components.
The performance drops even more when keeping the strided
convolution.

D. Selected case results: ALASKA I

In addition to ALASKA II experiments, we show how
an ImageNet pre-trained model, EfficientNet B4 with Mish
activation performs on the ALASKA I dataset [38] with nsF5,
UED, EBS, and J-UNIWARD as stego schemes. The dataset
preparation scripts have been modified to produce 256× 256
images (tiles), embedded with double the original payload size,
and compressed with JPEG quality 95. Recent work shows
that CNNs trained in the spatial domain struggle to detect
nsF5 for high JPEG quality factors [39]. Table IV shows that
the EfficientNet family also struggles with nsF5. For the other
stego schemes, EfficientNet B4 (Mish) surprisingly performs
similar to SRNet. We hypothesize that ImageNet pre-trained
models are more data efficient than SRNet trained from scratch
– ALASKA I has twice as many images per JPEG quality
factor (25, 000 for ALASKA II and 50, 000 for ALASKA I).
With the right design, ImageNet pre-trained models are able to
get more reliable performance with less data, which seems to
be in line with the observation made in [30]: “4.7. Accuracy
benefits of ImageNet pre-training fade quickly with dataset
size.” Note that EfficientNet B4 (Mish) was trained using
pipeline (A) described in Section II-A and initialized with
ALASKA II weights. Searching for better hyper-parameters
for the ALASKA I dataset might give slightly better results.

V. THE ALASKA II CHALLENGE

ALASKA II competitors were evaluated using the
wAUC (1) on 5,000 images split into 1,000 from a public
and 4,000 from a private leader board (LB). The actual details
about the split were unavailable to the teams. Each team was
allowed five submissions per day consisting of a scoring of all
5,000 images, with higher score given to images more likely
to be stego. The feedback about the detection accuracy was in
the form of the wAUC computed only from the 1,000 images
from the public LB.

The only information about the test set images that was
provided was that each embedding algorithm was used with
the same probability and the payload computed in the same
fashion as for the training set with the average message length
of 0.4 bpnzac. The images were all compressed with one of
the three JPEG quality factors: 95, 90, and 75.

Model ensembles, 2nd level stacking, and final submission:
Due to the competition’s time constraint, and the team’s
late merger with Eugene Khvedchenya, our model ensemble



Model UERD J-UNIWARD J-MiPOD MixtureQF 75 90 95 75 90 95 75 90 95

SRNet 0.9208 0.9081 0.8987 0.8675 0.8459 0.8499 0.9760 0.9604 0.8199 0.8934
SRNet noPC 0.9385 0.9526 0.9391 0.8788 0.8841 0.8851 0.9814 0.9776 0.8501 0.9227

Table I
WAUC FOR SRNET TRAINED WITH COVER-STEGO PAIR CONSTRAINT, THEN REFINED WITHOUT THE PAIR CONSTRAINT.

Model UERD J-UNIWARD J-MiPOD MixtureQF 75 90 95 75 90 95 75 90 95

MN-xL (Mish) 0.9577 0.9675 0.9570 0.8873 0.8895 0.8919 0.9827 0.9794 0.8621 0.9322
B4 (Mish) 0.9583 0.9664 0.9538 0.8885 0.8878 0.8967 0.9828 0.9807 0.8696 0.9331
B5 (Mish) 0.9606 0.9691 0.9597 0.8911 0.8945 0.9025 0.9851 0.9794 0.8693 0.9360
B6 (Mish) 0.9591 0.9665 0.9567 0.8935 0.8979 0.9022 0.9842 0.9801 0.8724 0.9361

B7* (Mish) 0.9592 0.9713 0.9528 0.9052 0.9112 0.8937 0.9876 0.9821 0.8600 0.9385

Table II
WAUC FOR FIVE PRE-TRAINED MODELS REFINED FOR STEGANALYSIS WITH MISH ACTIVATION AND ON NON-ROUNDED RGB PIXELS.
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Figure 1. Performance in terms of wAUC versus model size (number of parameters) of SRNet noPC and different ImageNet pre-trained models using Swish
(blue) and Mish (green) activation functions.
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Figure 2. Performance in terms of wAUC versus model size (number of
parameters) across different ImageNet pre-trained models building on the
ResNet stem and SRNet noPC.

MixNet-S stem wAUC

3× 3 conv, stride 1 0.9353
3× 3 conv, stride 2 0.9213

3× 3 conv, stride 1→3× 3 avg pool, stride 2 0.8445
3× 3 conv, stride 2→3× 3 avg pool, stride 2 0.8046

Table III
WAUC FOR FOUR VARIANTS OF THE MIXNET-S ARCHITECTURE.

consisted of two separate ensembles trained on different splits.
Within each ensemble, we trained a 2nd-level stacking model
on the detectors’ outputs on the validation split (catboost [40]
for Ensemble 1, xgboost [41] for Ensemble 2):

• Ensemble 1: QF (target encoded), DCTR, JRM, SRNet,
MixNet-S, MixNet-xL (Mish), EfficientNet B2, B4 Mish,
B5 (Mish), and B6 (Mish) (1 fold) (test score 0.9401,
private score 0.931, public score 0.935)

• Ensemble 2: QF (one hot encoded), EfficientNet B6* (4
folds), B6* (Mish) (2 folds) and B7* (Mish) (2 folds) (test
score 0.9424, private score 0.932, public score 0.941)

Due to the small size of the public LB, the best detector in
Ensemble 1 (B6 (Mish)) performed surprisingly low on the
public LB (public score 0.932), but had one of the best single
model performances on the private LB (private score 0.926).

SRNet B4 (Mish) OneHot+SRNet

J-UNIWARD 4.55, 4.66 5.03, 5.14 4.31, 4.00
EBS 2.13, 1.20 1.44, 0.77 2.47, 1.51
UED 5.03, 5.49 5.49, 6.08 5.24, 5.63
nsF5 11.51, 24.60 13.97, 31.47 3.80, 3.14

Table IV
DETECTION ERROR, MISSED DETECTION AT 5% FALSE ALARM

(PE ,MD5) OF SRNET, EFFICIENTNET-B4 WITH MISH ACTIVATION, AND
ONEHOT+SRNET [39] ON THE ALASKA I DATASET (TILES, QF95,

DOUBLE PAYLOAD) WHEN TESTED AGAINST INDIVIDUAL STEGO
ALGORITHMS.

We decided not to include it in our final submissions. The
final blending was done by rank averaging submissions from
Ensemble 1 and 2, which had a private score of 0.932 and
public score of 0.944.

VI. CONCLUSIONS

This paper looks into the possibility to build steganalysis
detectors from computer vision models pre-trained on Ima-
geNet and refined on examples of cover and stego images.
Due to time constraints, our study is limited to the setup of
ALASKA II and some selected cases. Besides superior de-
tection accuracy, the pre-trained models offer other significant
advantages over models that have to be trained from scratch:
the transfer learning is orders of magnitude faster than training
a dedicated steganalysis CNN from scratch and is more data
efficient. The refining can be done more efficiently and can
be done for multiple quality factors at the same time, which
drastically reduces the training complexity.

The authors conjecture that the superior detection perfor-
mance is due to the fact that the pre-trained models have been
exposed to a great variety of content and thus are able to
better learn noise patterns modulated by content – the stego
signal, with less data than specialized CNNs trained from
scratch. Preliminary experiments on the ALASKA I dataset
show that the accuracy benefit of ImageNet pre-trained models
diminishes with more training data.

This paper poses more questions than it answers. Many
interesting questions remain, such as the ability of the pre-
trained models to generalize to custom JPEG quantization ta-
bles, and what the refinement should be for building detectors
for spatial domain steganography. The authors are eager to
pursue these directions in the near future.
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