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Abstract
The goal of this article is construction of steganalyzers

capable of detecting a variety of embedding algorithms and
possibly identifying the steganographic method. Since deep
learning today can achieve markedly better performance
than other machine learning tools, our detectors are deep
residual convolutional neural networks. We explore binary
classifiers trained as cover versus all stego, multi-class de-
tectors, and bucket detectors in a feature space obtained as
a concatenation of features extracted by networks trained
on individual stego algorithms. The accuracy of the de-
tector to identify steganography is compared with dedicated
detectors trained for a specific embedding algorithm. While
the loss of detection accuracy w.r.t. increasing number of
steganographic algorithms increases only slightly as long as
the embedding schemes are known, the ability of the de-
tector to generalize to previously unseen steganography re-
mains a challenging task.

Introduction
The objective of steganography is to communicate se-

cretly in a covert manner, meaning the very existence of
the secret exchange cannot be established by observing the
communication channel. Steganalysis, on the other hand,
deals with detecting the use of steganography. The secret
message is typically embedded by slightly modifying the
individual elements of the cover object. For covers in the
form of images in raster formats, the embedding modifica-
tions are often restricted to changes by ±1. This makes
detection of steganography a very challenging problem. In
the vast majority of research papers today, the stegana-
lyst adopts the Kerckhoffs’ principle and assumes that the
source of cover images, the embedding scheme, and the
size of the secret payload are known. And even within this
unrealistically sandboxed environment, reliable detection
of modern content-adaptive embedding schemes in a sin-
gle image is not possible if the steganographers restrict the
size of their secret payload [3, 40].

In this paper, we take a look at the problem of de-
tecting diversified stego sources to address the situation
in which the steganalyst does not know exactly which
steganographic scheme was used by the steganographer.
We consider both the closed-set problem in which all stego
algorithms that can be potentially used are known and the
much more challenging open-set setup when the embed-
ding algorithm may not be known to the steganalyst. We
work with detectors built as convolutional neural networks
(CNNs) for several reasons. First, they have been shown to
provide significantly better performance than the outgoing
paradigm – rich models with simple classifiers. Second, rich
models are too “rigid” to adapt well to more complex stego

sources. In contrast, CNNs jointly learn their filters as well
as the classification. Finally, CNNs can be easily scaled up
if necessary to contain the increased complexity of diver-
sified stego sources, for example by increasing the number
of filters or layers. In particular, we work with the recently
proposed Steganalysis Residual Network (SRNet) [3] be-
cause it provides state-of-the-art performance among other
competing network architectures [38, 37, 40, 4, 41, 15].

We limit our study to spatial domain steganography
and investigate three different approaches: a binary one-
against-all detector, a mutli-class detector, and a “bucket
detector” built from binary detectors dedicated to detect-
ing each steganographic method by fusing them on the
“feature level.” The most promising approach of the three
is the multi-class detector, which is contrasted with previ-
ous art based on rich media models.

Relevant prior art
The problem of detecting multiple JPEG stego algo-

rithms has been addressed by Pevný et al. in [25, 27, 26,
28]. The authors used detectors built using machine learn-
ing and low-dimensional features, and focused on the early
steganographic schemes for the JPEG format: Jsteg [35],
OutGuess [30], Steghide [11], JP Hide&Seek , F5 [36], and
model-based steganography [32]. Special attention was
paid to resolving missed detection and large false alarms
due to double JPEG compression associated with F5 and
OutGuess.

Cogranne et al. [5] proposed a multi-class detector
with novel optimality criteria by leveraging the observation
that the projections of feature vectors on the weight vec-
tors of individual base learners in the FLD ensemble [19]
can be well modeled as a multi-variate Gaussian (MVG)
distribution. Under the assumption of the so-called “shift
hypothesis” [16], embedding only impacts the mean of the
MVG distribution but not its covariance, which allowed the
authors to derive optimal minimax test that guarantees a
prescribed false-alarm probability and maximizes the worst
correct classification probability across all stego algorithms
(all alternative hypotheses).

The important topic of building a universal stegan-
alyzer capable of detecting an arbitrary steganographic
scheme was investigated in [29]. In particular, the au-
thors studied a multi-class detector trained to detect K
steganographic algorithms using the max-wins strategy [28]
by collecting votes from

(
K+1

2
)
binary classifiers built be-

tween every pair of classes and implemented as Gaussian
SVMs. Since this detector failed on the so-called –F5 al-
gorithm (the F5 algorithm with the embedding operation
with reversed polarity) which is otherwise easily detectable,
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the authors looked into the family of one-class detectors,
namely one-class SVM, one-class neighbor machine [22],
and density-level detection [34]. While such detectors bet-
ter generalize to unknown embedding schemes (they are
more universal), they are less reliable on known steganog-
raphy.

A qualitatively new approach to identifying stegano-
graphic content has been proposed in [17]. There, the
authors moved away from the problem of identifying in-
dividual stego images to the problem of identifying the
steganographer by jointly considering multiple images sent
by the same individual (pooled steganalysis [16]). Finally,
we remark that the subject of detecting stego sources with
unknown (diverse) payload has been studied in [23].

Steganalysis with CNNs
In this paper, we revisit the problem of detecting di-

versified stego sources armed with a novel machine learning
tool – convolutional neural networks. The first detector of
this type appeared in 2015 [31] with all subsequent net-
work architectures [38, 37, 40, 4, 41, 15] retaining certain
critical elements from the previous detection paradigm, the
spatial rich model (SRM) [7], in the sense that the convo-
lutional filters in the first layer were either fixed or ini-
tialized with heuristic values, such as SRM filters [40] or
DCT kernels [37, 39], and the feature maps were thresh-
olded, quantized [37, 39, 40, 41], or split by their JPEG
phase [13, 4].

The first CNN free of the above heuristic elements
in which all network parameters are learned in an end-
to-end manner from randomly initialized values is the SR-
Net [3]. It is also the first architecture that is universal as it
provides state-of-the-art performance for both spatial and
JPEG domain. SRNet makes use of residual layers [9, 10]
that prevent the vanishing gradient phenomena, allow the
use of a deeper architecture, and encourage feature reuse
in the training process. The SRNet assumes that the in-
put image is a 256×256 grayscale tile.1 All convolutional
layers employ 3× 3 kernels, batch normalization, and all
non-linear activation functions are ReLU. The first eight
convolutional layers use unpooled feature maps on their
input because pooling can be detrimental for steganalysis
as it reinforces content and suppresses the noise-like stego
signal by averaging adjacent embedding changes. The first
eight layers can thus be loosely viewed as noise residual
extractors. Pooling in the form of 3× 3 averaging, stride
2, is applied on the output of Layers 8–11. All 512 16×16
feature maps outputted by the last convolutional layer are
globally pooled to form a 512-dimensional vector input into
the Inner-Product (IP) layer, the classifier part of the net-
work.

In this paper, we do not use the version of the SRNet
aware of the selection channel (Section V in [3]) because
we aim to detect a wide spectrum of both content-adaptive
and non-adaptive steganographic schemes. We also note
that SRNet can be easily modified to accept color images

1Steganalysis of images of an arbitrary size with CNNs is
studied in [8].

(three channels) by changing all 3× 3 filters in the first
layer with 3×3×3 filters.

Extension to diversified stego sources
Here, we introduce three methods for steganalysis of

diverse stego sources with CNNs that will be investigated in
the following sections. Vectors and matrices will be type-
set in boldface, and we reserve the calligraphic font for
sets. The symbol K stands for the number of stego algo-
rithms in our stego source. For two probability mass func-
tions (pmfs), p, q, their cross-entropy and KL-divergence
is H(p,q) and DKL(p||q), H(p) stands for the entropy of p.

Cover images will be denoted with c, stego methods
Sk will be indexed with k ∈ {0, . . . ,K}, where k = 0 is re-
served for the cover class. The stego version of cover c
is obtained by applying a probabilistic mapping (embed-
ding simulator) to c, obtaining thus the stego image Sk(c)
with S0 being the identity map, S0(c) = c for all covers
c. Technically, the embedding simulator depends on the
key used for the simulator and the size of secret payload
or embedding rate R, which will be measured in bits per
pixel (bpp). This dependence is not made explicit to avoid
cluttered notation.

We consider three different versions for our detector of
diversified stego source:

1. Binary classifier (cover vs. all) trained on the cover
class and the class of stego images embedded with all
stego methods.

2. Multi-class detector classifying to K+ 1 classes.
3. Bucket detector. First, K binary classifiers are

trained to distinguish between covers and a specific
stego method. Then, the front part of the networks
before the IP layer is used as a feature extractor out-
putting a 512-dimensional feature to each input im-
age. The features of all K detectors are then concate-
nated into one 512×K dimensional vector on which
a multi-layered perceptron (MLP) is trained as either
of the two detectors above.

For cover vs. all and the multi-class detector, the mini-
batches are formed by selecting cover-stego pairs [c,Sk(c)],
where both the covers c and k ∈ {1, . . . ,K} are selected
uniformly randomly.

The first approach is an embodiment of the “One
Against All” approach to multi-classification. The logic
is that a binary classifier presented with the class of cover
images and images embedded with sufficiently many dif-
ferent stego schemes will be able to properly generalize to
unseen stego methods with performance against known al-
gorithms comparable to that of detectors dedicated to a
single stego method. While this detector cannot identify a
specific embedding scheme, it is easy to adjust its decision
threshold to control the false alarm.

In contrast, the multi-class detector has the ability to
identify the particular stego method. It can also be used
for binary classification to detect between cover images and
images with general steganographic content.

The bucket detector uses a concatenation of features
extracted by networks trained for each embedding algo-
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rithm. The logic is that perhaps a single network is not
large enough to contain the complexity of a heavily diverse
stego source, which may be alleviated by concatenating the
features from each dedicated detector. The bucket detec-
tor can be trained as cover vs. all or as a multi-class. Since
it internally uses a “feature representation,” it could also
be used for building a one-class detector, e.g., using one of
the methods studied in [29].

A more elaborate version of the bucket detector can
be obtained by training

(
K+1

2
)
binary detectors to dis-

tinguish between every pair of classes. In this case, the
concatenated “bucket” feature would have dimensionality
512×

(
K+1

2
)
. This version of the detector would be rather

expensive to implement with deep learning based detectors
unless K is relatively small.

For multi-class CNNs, the output layer of the SRNet
is a soft-max applied to K + 1 neurons that output the
probability qk(x) of the input image x belonging to class
k. The loss function evaluated for a minibatch of images
B is

L(B) =− 1
|B|
∑
x∈B

K∑
k=0

pk(x) logqk(x) (1)

= 1
|B|
∑
x∈B

H(p(x), q(x)), (2)

where for image x, pk(x) is the ground truth pmf or an indi-
cator function on {0,1, . . . ,K} defined as pk(x) = 1 if x be-
longs to class k and zero otherwise. Since the cross-entropy
H(p,q) =H(p)+DKL(p||q), minimizing (2) is equivalent to
minimizing the KL-divergence between a priori class prob-
abilities and the class probabilities outputted by the net-
work.

Denoting Bk = {x ∈ B|x = Sk(c) for some cover c},
k = 0,1, . . . ,K, the loss (2) can be written as

L(B) =
K∑
k=0

|Bk|
|B|

1
|Bk|

∑
x∈Bk

H(p(x), q(x))

.=
K∑
k=0

πkHk (3)

for a sufficiently large minibatch, where Hk is the average
cross-entropy for images from class k and πk = |Bk|/|B| is
the prior probability that an image in batch B belongs to
class k.

Training detectors for steganalysis requires pairing up
each cover with the corresponding stego image because
this pair constraint helps find the gradients separating the
classes. Depending on how the pairs are formed, different
prior πk on each class is imposed. For example, pairing
up two classes selected uniformly randomly from all K+1
classes (K stego methods and the cover class) leads to a loss
function (3) with equal priors of each class, πk = 1/(K+1)
for all k = 0,1, . . . ,K. On the other hand, forming pairs by
first selecting a cover and then a stego method uniformly

randomly leads to class priors:

π0 = 1
2 , πk = 1

2K , for k ≥ 1, (4)

This seems more appropriate for applications in ste-
ganalysis because the detector will have a lower false alarm.
This way of forming the batches will be used in this paper.

We close this section by pointing out that the loss
function could be adjusted by introducing weights into the
indicator function Lk(x) = wkpk(x) to incorporate other
priors and/or further lower the false alarm or to improve
the detection accuracy of a certain stego algorithm by forc-
ing the optimizer to (asymptotically for large minibatches)
minimize the following weighted loss:

L(B,w) =
K∑
k=0

wkπkHk. (5)

The weights effectively translate to different priors
π′k = wkπk/

∑
jwjπj . For example, for K = 2 stego

schemes, using w0 = L0(c) = 2 for covers and w1 =
L1(S1(c)) = w2 = L2(S2(c)) = 1 for both stego classes
changes the effective priors in the loss function from π =( 1

2 ,
1
4 ,

1
4
)
to π′ =

(
1, 1

4 ,
1
4
)
/
(
1 + 1

4 + 1
4
)
=
( 2

3 ,
1
6 ,

1
6
)
.

Training network detectors
All experiments in this paper were executed on images

prepared from BOSSbase 1.01 [1] and BOWS2 [2] each with
10,000 grayscale images resized to 256× 256 by ’imresize’
in Matlab with default parameters. For training the CNN
detectors, BOSSbase was randomly divided into three sets
with 4,000 / 1,000 / 5,000 images. The 4,000 BOSSbase
images were added to all 10,000 BOWS2 images to form the
training set of 14,000 cover images (2×14,000 images for
training), 2× 1,000 BOSSbase images for validation, and
2× 5,000 BOSSbase images for testing. This dataset was
adopted to be compatible with the datasets used in [40, 3].

All stego images were embedded with a fixed payload
0.4 bpp using embedding simulators operating on the cor-
responding rate–distortion bounds with the exception of
the Edge Adaptive steganography [21]. This larger pay-
load was selected to make the stego classes more sepa-
rable since the stego source diversification increases the
difficulty of detection. For non-adaptive LSB matching
(LSBM), it was assumed that the message was embed-
ded with an optimal ternary code, which translated to
the change rate β = H−1

3 (0.4) .= 0.06254, where H3(x) =
−x log2x− (1−x) log2(1−x) +x is the ternary entropy.

As explained in [3] and unless mentioned otherwise,
the SRNet was trained with the stochastic gradient descend
optimizer Adamax [18] with minibatches of 32 images (16
cover-stego pairs). The training database was shuffled af-
ter each epoch. Images in each batch were subjected to
data augmentation with random mirroring and rotation of
images by 90 degrees. The batch normalization parame-
ters were learned via an exponential moving average with
decay rate 0.9. The filter weights were initialized with the
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He initializer2 and 2×10−4 L2 regularization. Filter biases
were set to 0.2 and no regularization. The weights in the
fully connected classifier (IP) layer were initialized with a
zero mean Gaussian with standard deviation 0.01 and no
bias. All network detectors were trained for 400k iterations
with learning rate (LR) 0.001 followed by 100k iterations
with LR 0.0001. The snapshot achieving the best valida-
tion accuracy in the last 50k iterations was selected as the
detector.

Detecting multiple stego algorithms
The results are divided into three subsections, each

dedicated to one type of detector. The experiments with
the bucket detector were scaled down because it performed
poorly.

The cover vs. all binary detector and the multi-
class detector were first trained for four content-adaptive
steganographic algorithms WOW [12], S-UNIWARD [14],
HILL [20], and MiPOD [33]. The networks were trained
on three of these four to see how well they generalize to
the fourth stego algorithm. At the same time, we tested
the networks on LSBM to see how this non-adaptive and
easy to detect algorithm is detected by a detector trained
only on adaptive algorithms. Then, both detectors were
trained on all four content-adaptive algorithms as well as
all five, after adding LSBM. To assess the ability of the de-
tector to generalize to unseen content-adaptive embedding,
we tested them on Edge-Adaptive (EA) steganography [21]
and on HUGO [24]. Finally, the detectors were trained on
all seven embedding methods to see whether the network
is capable to contain the complexity of this diverse stego
source.

Cover vs. all stego detector
Table 1 shows the total probability of error PErr

of misdetecting each class when training on different
combinations of three to five embedding algorithms
listed in the first column. The errors of stego al-
gorithms not included in training are highlighted in
bold. The value PErr for the cover class is the false-
alarm probability, PErr = PFA, while PErr corresponds to
the missed detection, PErr = P

(k)
MD, for stego class k ∈

{WOW,SUNI,HILL,MiPOD,LSBM,EA,HUGO}, which
is the probability of detecting the kth stego class as cover.
The loss is the difference between the missed detection
probability P (k)

MD and the missed detection of a dedicated
CNN trained on each individual stego method when adjust-
ing its detection threshold to achieve the same false-alarm
rate PErr = PFA as the cover vs. all detector.

The largest loss was observed for HILL when not train-
ing on HILL. On the other hand, not training on MiPOD
lead to an overall smallest loss across the four embedding
schemes (HILL, MiPOD, WOW, and S-UNIWARD). The
cover vs. all detector trained only on content-adaptive al-
gorithms did poorly on the non-adaptive LSBM. Including
LSBM in the training improved its detection dramatically
even though the loss (0.0418) was the largest of the five

2https://arxiv.org/pdf/1502.01852v1.pdf

stego methods. The detector trained on the four adap-
tive methods and LSBM, however, did not recognize stego
images generated by EA and HUGO. The missed detec-
tion rate for EA was P (EA)

MD = 0.2218 (loss of 0.2142) and
P

(HUGO)
MD = 0.5630 for HUGO (loss of 0.4460). This indi-

cates that the cover vs. all detector does not generalize
well to previously unseen embedding methods.

As the next step, we added HUGO and EA to training
to see how the accuracy of the cover vs. all detector scales
w.r.t. the number of stego algorithms. The SRNet, how-
ever, did not converge from randomly initialized weights.
This is most likely due to the small number of stego im-
ages from each class in a minibatch of 32 images. Since
larger minibatches would not fit the memory of our Titan
Xp GPUs (12 GB), we explored two different remedies: 1)
seeding the network with weights from the cover vs. all
detector trained for five stego algorithms and 2) training
with a larger minibatch by employing the so-called gradi-
ent checkpointing3 to trade off the memory for increased
training time. The results are summarized in Table 2. By
inspecting the loss, we conclude that training from scratch
with the larger minibatch is better than seeding. Com-
pared to the detector trained on five algorithms, the loss
for the first five algorithms increased by 1.4–3.7%. The EA
and HUGO experience the largest loss.

Multi-class detector
The performance of the multi-class detector was eval-

uated with confusion tables and with the probability of a
miss PErr interpreted for each stego class as the probabil-
ity of not identifying the stego image as one of the stego
algorithms, which is equal to the probability of identifying
the stego image as cover.

Table 3 is an equivalent of Table 1 for the multi-class
detector. By comparing both tables, we conclude that the
multi-class detector provides better results than the binary
cover vs. all detector but also fails to generalize to the non-
adaptive LSBM and unseen adaptive algorithms (the miss
probability for EA and HUGO were 0.3132 and 0.6744,
respectively).

The confusion matrix when training the multi-class
detector on five embedding algorithms (the columns of the
table) is shown in Table 4. As before, the EA and HUGO
algorithms are not detected well when excluded from train-
ing. However, when added to the set of known stego al-
gorithms on which the detector is trained, all seven al-
gorithms are reliably detected (Table 5) with losses rang-
ing from 0.84% for MiPOD to 5.7% for EA (see Table 6).
Please, note that the multi-class detector has a much
smaller false alarm (0.0336) than the cover vs. all detector.

When training on all seven algorithms, the network
would not converge, which we addressed by seeding it with
the network trained on five algorithms and then by train-
ing from scratch with a larger minibatch of 64 images using
gradient check-pointing as explained in the previous sec-
tion. Both results are shown in Table 6, which again con-
firms that training from scratch with a larger minibatch is

3https://github.com/openai/gradient-checkpointing
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PErr Loss
Cover 0.1374 0
HILL 0.1742 0.0270
WOW 0.0688 0.0184
S-UNI 0.0884 0.0198

MiPOD 0.2032 0.0376
LSBM 0.3754 0.3752

PErr Loss
0.1490 0
0.1516 0.0182
0.0890 0.0336
0.1226 0.0620
0.1520 0.0036
0.5466 0.5466

PErr Loss
0.1562 0
0.1578 0.0320
0.0890 0.0452
0.0934 0.0404
0.1532 0.0068
0.1672 0.1672

PErr Loss
0.1200 0
0.2616 0.0960
0.0840 0.0216
0.1028 0.0210
0.1928 0.0090
0.3394 0.3390

PErr Loss
0.1392 0
0.1762 0.0310
0.0872 0.0372
0.1042 0.0370
0.1716 0.0070
0.2612 0.2610

PErr Loss
0.1148 0
0.2190 0.0318
0.1080 0.0418
0.1108 0.0256
0.2070 0.0198
0.0430 0.0418

Table 1. Missed detection probability PErr on individual steganographic algorithms with the “cover vs. all” binary detector trained on
multiple embedding algorithms. The loss is the increase of the error w.r.t. a detector dedicated to one stego source (algorithm) when
adjusting its threshold to produce the same false alarm as the cover vs. all detector. Boldface marks the algorithms excluded during
training.

PErr Loss
Cover 0.1106 0
HILL 0.2704 0.0928
WOW 0.1392 0.0692
S-UNI 0.1392 0.0502

MiPOD 0.2508 0.0606
LSBM 0.0528 0.0516

EA 0.0932 0.0848
HUGO 0.2228 0.1022

PErr Loss
0.1402 0
0.2132 0.0692
0.1164 0.0670
0.1136 0.0478
0.2046 0.0410
0.0380 0.0378
0.0810 0.0780
0.1754 0.0828

Table 2. Missed detection probability PErr on individual
steganographic algorithms with the “cover vs. all” binary de-
tector trained on all seven algorithms. Left: seeded with the
detector trained on five algorithms, Right: trained from scratch
with minibatch size 64 using gradient checkpointing. For a fair
comparison, the loss is always w.r.t. a dedicated detector built
to detect a specific embedding method at the same false-alarm
rate as the cover vs. all detector.

preferable to seeding.

Bucket detector
Since the bucket detector performed the worst of the

three studied approaches, we only comment on a few se-
lected cases. Table 7 shows the missed detection rate when
training the binary cover vs. all bucket detector on four
and five algorithms, respectively. The cover vs. all detec-
tor trained as a single network (columns 10–13 in Table 1)
provides a clear advantage over the bucket approach. In
particular, note that including the LSBM in training did
not sufficiently decrease the missed detection for LSBM.

Table 8 shows the confusion matrix when training the
multi-class bucket detector on four embedding algorithms.
This should be compared with the confusion matrix in Ta-
ble 5 for the multi-class network detector trained on all
seven algorithms. With a comparable false alarm rate, the
detection of stego classes is markedly worse for the bucket
detector despite being built for a less diverse stego source.

Comparison to prior art
To contrast the performance of the CNN-based detec-

tors with prior art, we selected the low-complexity linear
classifier [6] as the machine learning tool and the Spatial
Rich Model (SRM) [7] for modeling images. In particular,
we implemented a cover vs. all detector, a max-wins multi-
class detector, and a MAP multi-class detector by model-
ing the projections of image features on weight vectors as

a multi-variate Gaussian (MVG) distribution. These de-
tectors were implemented to detect all seven embedding
algorithms studied above at the same payload of 0.4 bpp.
The training set was the union of the training and valida-
tion sets used for training the networks.

Cover vs. all detector
The cover vs. all detector was prepared by training

one binary classifier on Ntrn = 15,000 cover features and
the same number of stego images with [Ntrn/K] images
embedded by each of the K embedding algorithms. The
decision threshold was set to obtain the same value of the
false alarm as the CNN-based cover vs. all detector: 0.1106
(see Table 2).

Max-wins detector
For the max-wins multi-class detector, a binary clas-

sifier was trained between each pair of classes, giving us
nw =

(
K+1

2
)

= 28 classifiers. An image from the testing
set is presented to all nw classifiers, then the histogram
of their answers is formed, and the bin with the maximum
number of votes is the final detected class. Ties are resolved
randomly. The decision thresholds for detectors trained for
two stego classes were set to minimize the total probability
of error under equal priors, PE = minPFA

1
2 (PFA +PMD).

For the seven binary detectors between the cover class and
a stego class, the thresholds were set to achieve the same
false-alarm rate PFA = α0 across all seven detectors. A
binary search for the value of α0 was executed to obtain
the same false-alarm rate of the max-wins detector as the
CNN-based multi-class detector: 0.0336 (see Table 5).

Multi-class MAP detector
The third type of detector was inspired by [5] where

the authors modeled the projections of a rich feature on
weight vectors of base learners in the FLD-ensemble [19]
with a multi-variate Gaussian distribution. The shift hy-
pothesis stating that embedding changes the mean of the
MVG of covers but not its covariance allowed consider-
ing a novel criteria of optimality – the minimax criterion
that maximizes the worst correct stego class probability
for a prescribed false alarm rate – probability of detecting
a cover image as one of the stego classes (see Theorem 1
in [5]). Since the output of detectors built as CNNs is non-
Gaussian (see, e.g., the ROC curves in [3]), the detectors
proposed in this paper cannot be built in the same fashion.
Instead, to compare both detectors, we used the modeling
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PErr Loss
Cover 0.0578 0
HILL 0.2490 −0.0016
WOW 0.1338 0.0112
S-UNI 0.1606 0.0098

MiPOD 0.3180 0.0584
LSBM 0.4244 0.4172

PErr Loss
0.0682 0
0.2348 −0.0048
0.1368 0.0290
0.2226 0.0862
0.2544 0.0134
0.7166 0.7120

PErr Loss
0.0684 0
0.2364 0.0066
0.1504 0.0426
0.1592 0.0226
0.2496 0.0080
0.3486 0.3440

PErr Loss
0.0566 0
0.3314 0.0788
0.1330 0.0098
0.1576 0.0052
0.2530 −0.0092
0.2758 0.2678

PErr Loss
0.0578 0
0.2534 0.0028
0.1330 0.0104
0.1508 0.0000
0.2508 −0.0088
0.4266 0.4186

PErr Loss
0.0590 0
0.2634 0.0162
0.1516 0.0310
0.1724 0.0238
0.2710 0.0130
0.0356 0.0288

Table 3. Missed detection probability PErr on individual steganographic algorithms with the multi-class detector trained on different
combinations of embedding algorithms. The loss is the increase of the error w.r.t. a detector dedicated to one stego source (algorithm).
Boldface marks the algorithms excluded during training and listed in the top row. When tested on individual algorithms, the output of
the multi-class detector was considered correct when the stego image was detected as one of the stego methods.

True\Det Cover HILL WOW S-UNI MiPOD LSBM
Cover 0.9410 0.0196 0.0062 0.0102 0.0160 0.0070
HILL 0.2634 0.6472 0.0142 0.0226 0.0472 0.0054
WOW 0.1516 0.0250 0.7146 0.0786 0.0256 0.0046
S-UNI 0.1724 0.0366 0.0578 0.6764 0.0440 0.0128

MiPOD 0.2710 0.0840 0.0260 0.0464 0.5654 0.0072
LSBM 0.0356 0.0032 0.0034 0.0068 0.0004 0.9506
EA 0.3132 0.0434 0.0850 0.2008 0.2292 0.1284

HUGO 0.6744 0.0838 0.0158 0.1026 0.1070 0.0164

Table 4. Confusion matrix for the multi-class detector trained
on five embedding algorithms. The last two rows show the results
on EA and HUGO stego images that were not used for training.

True\Det Cover HILL WOW S-UNI MiPOD LSBM EA HUGO
Cover 0.9664 0.0078 0.0034 0.0024 0.0084 0.0010 0.0030 0.0066
HILL 0.3304 0.5962 0.0116 0.0102 0.0346 0.0018 0.0056 0.0096
WOW 0.1962 0.0192 0.7004 0.0514 0.0210 0.0012 0.0072 0.0034
S-UNI 0.2182 0.0306 0.0656 0.6150 0.0396 0.0082 0.0072 0.0156

MiPOD 0.3332 0.0766 0.0194 0.0326 0.5190 0.0026 0.0068 0.0098
LSBM 0.0596 0.0010 0.0010 0.0088 0.0008 0.9248 0.0020 0.0020

EA 0.1134 0.0030 0.0026 0.0020 0.0020 0.0002 0.8726 0.0042
HUGO 0.3102 0.0142 0.0048 0.0116 0.0094 0.0020 0.0162 0.6316

Table 5. Confusion matrix for the multi-class detector when
training on all seven embedding algorithms.

assumption imposed on projections of rich features to build
a detector that mimics the objective function minimized in
the corresponding CNN detectors – the total detection er-
ror with class priors (4). We now elaborate on the details
of this approach.

We will assume that images are represented with fea-
ture vectors f ∈ Rd, where d is the feature dimensionality
(for the SRM, d = 34,671). We split the index set of the
training set into two disjoint subsets I1 and I2 with 12,000
and 3,000 cover images and the same number of stego im-
ages from each class. The first is used to train all nw
binary classifiers between classes k and l with weight vec-
tors w(k,l) ∈ Rd. We remind that for K = 7 stego classes
there will be nw = 28 of such weight vectors. The images
from the second subset will be used to estimate the means
µ(k) ∈ Rnw , k = 0,1, . . . ,K, and the covariance matrices
C(k) ∈ Rnw×nw of the MVG distributions N (µ(k),C(k))
of the nw-dimensional vector of projections of feature vec-
tors from class k on all nw weight vectors. In other words,
there are K+ 1 MVG distributions in the nw-dimensional
space of projections. Putting all nw weight vectors as rows
of a matrix W∈Rnw×d and denoting the sets of features f
from class k and training set I2 as F(k)

I2
, the sample means

PErr Loss PErr Loss
Cover 0.0336 0 0.0644 0
HILL 0.3304 0.0312 0.2544 0.0190
WOW 0.1962 0.0392 0.1402 0.0270
S-UNI 0.2182 0.0344 0.1560 0.0158

MiPOD 0.3332 0.0236 0.2564 0.0084
LSBM 0.0596 0.0398 0.0476 0.0428

EA 0.1134 0.0610 0.0834 0.0572
HUGO 0.3102 0.0946 0.2020 0.0280

Table 6. Missed detection probability PErr and the loss w.r.t.
dedicated detectors for the multi-class detector trained on all
seven embedding algorithms. Left: seeded with the detector
trained on five algorithms, Right: trained from scratch with mini-
batch size 64 using gradient checkpointing. For a fair comparison,
the loss is always w.r.t. a dedicated detector built to detect a
specific embedding method at the same false-alarm rate as the
cover vs. all detector.

PErr Loss
Cover 0.2537 0
HILL 0.1793 0.0749
WOW 0.0953 0.0844
S-UNI 0.1460 0.0964

MiPOD 0.1737 0.0650
LSBM 0.5983 0.3954

PErr Loss
Cover 0.2050 0
HILL 0.2453 0.0829
WOW 0.1430 0.0874
S-UNI 0.1857 0.0919

MiPOD 0.2550 0.0750
LSBM 0.2510 0.2041

Table 7. Missed detection probability PErr and the loss w.r.t.
dedicated detectors for the binary bucket detector trained on four
(left) and five (right) algorithms.

and covariances are obtained through

µ(k) = E
[

W · f
∣∣∣∣f ∈ F(k)

I2

]
, (6)

C(k)
kl = E

[(
(W · f)k−µ

(k)
k

)
·
(

(W · f)l−µ
(k)
l

)∣∣∣∣f ∈ F(k)
I2

]
.

(7)

Given a feature f ∈ Rd of a test image, the hypothesis
test is

H0 :f ∼N (µ(0),C(0))

H1 :f ∼N (µ(1),C(1))
· · · · · ·

HK :f ∼N (µ(K),C(K)).
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True\Detected Cover HILL WOW S-UNI MiPOD
Cover 0.9660 0.0070 0.0077 0.0107 0.0087
HILL 0.4653 0.3980 0.0353 0.0353 0.0660
WOW 0.3690 0.0666 0.3893 0.0913 0.0837
S-UNI 0.4650 0.0530 0.1143 0.2643 0.1033

MiPOD 0.5020 0.0977 0.0783 0.0797 0.2423
LSBM 0.8527 0.0220 0.0307 0.0660 0.2867

Table 8. Confusion matrix for the bucket multi-class detector
trained on four embedding schemes.

With prior class probabilities πl = Pr(Hl), l =
0,1, . . . ,K, the MAP multi-class detector will decide class
k when

k = argmax
k′

Pr(Hk′ |f) = argmax
k′

Pr(f |Hk′ )Pr(Hk′ ),

(8)

where

Pr(f |Hl) =
(

(2π)nw |C(l)|
)−1/2

× exp
(1

2(W · f −µ(l))T (C(l))−1(W · f −µ(l))
)

(9)

are the estimated MVG densities.
To allow direct comparison, the parameter π0 in the

class priors
(
π0,

1−π0
K , . . . , 1−π0

K

)
was selected so that the

MAP detector achieves the same false-alarm rate as the
CNN-based multi-class detector: 0.0336 (see Table 5).

The estimated covariance matrices for all eight classes
are shown (after scaling them to the same dynamic range)
in Figure 1. While the shift hypothesis was observed to ap-
proximately hold for modern content-adaptive algorithms,
the covariance of LSBM exhibited a completely different
structure. Also, despite “structural similarity” of the co-
variance matrix of EA to Covers and modern adaptive
schemes, its entries were by an order of magnitude larger
than those of the five remaining content-adaptive schemes
and Covers. This is most likely due to the rather large aver-
age change rate (≈ 0.16) of EA compared to≈ 0.09 for mod-
ern adaptive embedding. This is why in the MAP detec-
tor, we did not use the shift hypothesis and estimated the
covariance matrices for each class separately. This finding
also precludes constructing detectors with the minimax cri-
terion as proposed in [5]. To obtain further insight into the
distribution of feature projections, in Figure 2 we show the
means of the MVG distributions when scaling the nw = 28
dimensional space of projections to three dimensions using
multi-dimensional scaling in Matlab. As expected, HILL,
MiPOD, and S-UNIWARD classes are closest to Covers
with WOW and HUGO at a larger distance, with the two
most detectable classes, EA and LSBM, lying the furthest
from Covers.

Results
All three detectors in this section were trained on the

same split of the dataset into the training and testing set as
for the network detectors. The cover vs. all was trained on
all 2×15,000 images from the training set. The max-wins

Figure 1. Covariance matrices for projections of feature vectors from (by
rows): cover, HILL, WOW, S-UNIWARD, MiPOD, LSBM, EA, and HUGO.
The matrices were scaled to 8-bit grayscale images for visualization.

and the MAP detectors were trained on 12,000 randomly
selected cover images and the corresponding stego images.
The remaining 3,000 cover (and stego) images were used
to estimate the decision thresholds for the individual nw
classifiers and the MVG parameters.

Table 9 contrasts the the probability of a miss, PErr,
for the cover vs. all detector built with a CNN (Table 2)
and with a linear classifier on SRM features. While the
overall detectability of stego algorithms seems to exhibit a
similar pattern, the CNN detector is markedly more accu-
rate.

For better compactness, instead of presenting the com-
plete confusion tables, Table 10 shows the probability of a
miss PErr and the correct classification probability PCC
(the diagonal of the confusion matrix) for three multi-class
detectors: the CNN from the previous section, the max-
wins, and MAP detectors implemented with SRM features.
While the MAP detector is clearly better than the max-
wins (except for EA), they are outperformed by the CNN
both in terms of a significantly lower PErr and larger PCC.
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Figure 2. Visualizing the means of the MVG distributions in the space
of projections when mapped from nw = 28 dimensions to 3 using multi-
dimensional scaling.

CNN
PErr Loss

Cover 0.1106 0
HILL 0.2704 0.0928
WOW 0.1392 0.0692
S-UNI 0.1392 0.0502

MiPOD 0.2508 0.0606
LSBM 0.0528 0.0516

EA 0.0932 0.0848
HUGO 0.2228 0.1022

SRM
PErr Loss

0.1106 0
0.5940 0.4164
0.4254 0.3554
0.4112 0.3222
0.5396 0.3494
0.1946 0.1934
0.2256 0.2172
0.3860 0.2654

Table 9. Missed detection probability PErr and loss on individual
steganographic algorithms achieved with the “cover vs. all” bi-
nary detector implemented as a CNN (left) and a low-complexity
linear classifier with SRM features (right) on all seven algorithms
(the CNN detector was taken from Table 2).

Conclusions
This paper deals with the problem of detecting se-

crets potentially embedded with many different content-
adaptive and non-adaptive steganographic algorithms.
The best detector was a multi-class convolutional neural
network implemented with the previously proposed deep
residual architecture called SRNet. We showed how its
loss function can be adjusted to control the false alarms or
missed detection of selected stego schemes. When trained
on seven embedding algorithms, this multi-class detector
was able to reliably classify the stego algorithm, while
its ability to detect steganographic content decreased only
marginally w.r.t. binary CNN detectors dedicated (and
tested) on a specific embedding algorithm. Also investi-
gated were detectors built as cover vs. all and bucket detec-
tors in the “feature space” outputted by dedicated binary
classifiers trained for each embedding scheme. The multi-
class detector also performed significantly better than de-
tectors constructed as linear classifiers while representing
images with the SRM.

While the multi-class CNN was able to “contain” the
complexity of the diversified stego source in the sense that

Multi-class CNN
PErr PCC

Cover 0.0336 0.9664
HILL 0.3304 0.5962
WOW 0.1962 0.7004
S-UNI 0.2182 0.6150

MiPOD 0.3332 0.5190
LSBM 0.0596 0.9248

EA 0.1134 0.8726
HUGO 0.3102 0.6316

Max-wins (SRM)
PErr PCC

0.0332 0.9668
0.8232 0.0570
0.6540 0.2248
0.6684 0.1788
0.7676 0.0792
0.2896 0.6756
0.2606 0.6958
0.5256 0.3984

MAP (SRM)
PErr PCC

0.0336 0.9664
0.7044 0.1702
0.6098 0.3014
0.5550 0.2768
0.6850 0.1332
0.2322 0.6386
0.3934 0.5680
0.4684 0.4736

Table 10. Probability of miss PErr and the correct classifi-
cation probability PCC for the multi-class CNN based detector
(left), the max-wins detector implemented with SRM (middle),
and the MAP detector with MVG model of weight vector pro-
jections (right).

it provided detection of steganography comparable to that
of dedicated detectors, it appeared to struggle to recognize
previously unseen steganographic methods. The difficult
problem of building a universal blind steganalyzer is thus
postponed to our future work.

This study is limited to a rather narrow source – the
union of the popular BOSSbase and BOWS2 – and to stego
images embedded with a fixed payload. A mismatch in
the cover source is likely to significantly decrease the de-
tection performance. Battling the cover source mismatch
in spatial-domain steganography is an extraordinarily dif-
ficult problem due to the great diversity of possible pro-
cessing that can be applied to images prior to embedding.
Based on previous studies, the impact of the mismatch is
likely to be significantly smaller in the JPEG domain where
we expect the multi-class detector to be more universal. At
the moment, the detectors constructed in this paper can
likely be trusted only when the analyst has access to the
cover source to generate enough training examples. Detec-
tion of diversified stego sources in the JPEG domain will
be the subject of our future research.

Finally, we note that although we fixed the relative
payload, we expect the general satisfactory performance to
transfer to an unknown payload. Based on our preliminary
experiments, training a dedicated CNN-based detector on
a “mid payload” produced comparable accuracy as training
on the correct random mixture of payloads. This problem,
too, is expected to make its way into our future effort.

All code used to produce the results in this paper,
including the network configuration files will be available
from http://dde.binghamton.edu/download/.
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