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Abstract—Deep steganalysis has been crucial in detecting
hidden messages in digital media for nearly a decade. However,
its common security evaluation criterion-the probability of error
under equal prior-fails to reflect real forensic challenges. In
practice, low False Positive (FP) rates matter most but are only
adjusted empirically post-training. Standard classifiers, trained
with cross-entropy loss, optimize balanced error rates rather than
minimizing FPs.

We propose a framework that integrates the likelihood ratio
test into the loss function to optimize deep classifiers for low FP
rates. Our method outperforms standard cross-entropy and other
modern approaches, as demonstrated on the BOSSBase dataset
across FP rates of 10−3 to 10−1 in both uncompressed and JPEG
domains.

Index Terms—steganalysis, neyman-pearson, false positive
rate, deep learning

I. INTRODUCTION

Steganography [8] covertly embeds messages within digital
objects, modifying a cover object into a stego object with
undetectable changes. A secret message can be retrieved using
the correct stego key. Steganalysis aims to detect such hidden
data, primarily in digital images. Due to the absence of
robust statistical models for natural images, deep learning
classifiers [3], [17], [18] dominate this binary classification
task.

While convolutional neural networks (CNNs) outperform
feature-based methods [9], [11], they are typically optimized
with cross-entropy loss, which balances False Positive (FP)
and False Negative (FN) rates. However, forensic applications
demand ultra-low FP rates (below 10−3), as false detections
can lead to costly investigations and wrongful targeting.
Despite this, research on optimizing detectors for low FP
rates remains scarce [7], [16], with prior steganalysis efforts
focusing on linear classifiers.

Pevny and Ker [15] introduced loss functions (e.g., expo-
nential and logistic loss) for optimizing the FP50 metric—FP
rate at 50% FN rate—by maximizing feature separation. More
recently, alternative evaluation metrics have emerged. The
ALASKA [5] challenge introduced the MD5 metric (FN
at 5% FP rate), but even the winning team [19] selected
model post-training rather than optimizing for this criterion.
ALASKA 2 [6] introduced weighted AUC (wAUC) to empha-

size low FP regions, yet top teams still relied on cross-entropy
loss [20].

To bridge this gap, we propose a novel loss function lever-
aging the Neyman-Pearson lemma [14], inspired by anomaly
detection methods such as PatMat [1] and DeepTopPush [13].
Unlike prior work, our approach directly optimizes deep learn-
ing detectors for low FP rates, improving forensic reliability
while maintaining accuracy.

II. PRELIMINARIES AND PRIOR ART
Let X ∈ RN be an image with N pixels and label

y ∈ {0, 1} (0 for cover, 1 for stego). Let CΛ, and SΛ denote
the cover and stego images in a set Λ ∈ {train,val,test}.
Steganalysis is a binary hypothesis problem:

H0 : X is cover, H1 : X is stego. (1)

Since a purely statistical solution is infeasible, machine
learning is used instead. Let f : RN → R2 be a CNN out-
putting logits φc (cover) and φs (stego). Defining φ = φs−φc,
the probability of an image being stego is approximated using
the sigmoid function:

ŷ = σ(φ) =
1

1 + e−φ
. (2)

With this in mind, we assume that a detector outputs only
a single logit φ. The detector then decides that a given image
is a stego image when ŷ > 1/2, or equivalently when φ > 0.
This gives an implicit decision threshold at zero, though it
can be adjusted via the ROC curve. The detector is typically
optimized for this threshold, balancing FP and FN rates.

To optimize the classifier’s weights with gradient-based
methods, a binary cross-entropy loss function is used:

l(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ). (3)

For stego images, this minimizes log(1 + e−φ), while for
covers, it maximizes the same function. This introduces a
logistic transformation:

L(x) = log(1 + exp(−x)), (4)

whose derivative ∂L(x)/∂x = σ(x) − 1, reduces em-
phasis on correctly classified samples. This prevents over-
optimization on easy cases, enhancing detection of harder
samples.
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Fig. 1: Proposed estimation of the (1−α0)-quantile from an empirical cdf Fc(x). B denotes the size of a cover minibatch, and
C is the cover training dataset. Solid lines are the empirical cdfs, and dashed lines represent their linear approximations. Blue:
empirical cdf estimated from a minibatch of B samples, green: empirical cdf with the top sample added to the minibatch, red:
empirical cdf with the two top samples added to the minibatch. The spacing between the green cdf values should be 1/(B+1),
which is omittted for simplicity. The true (1−α0)-quantile is denoted by τ∗, tα denotes PatMat’s threshold, and t0 is the top
sample used as a threshold for DeepTopPush.

A. Neyman-Pearson lemma
In this work, we build upon previously proposed methods of

optimization at low FP rates, both of which are based on the
Neyman-Pearson lemma [14]. Let’s consider the observed logit
φ as a realization of a random variable. Under the null (cover)
hypothesis, we will denote the cumulative distribution function
(cdf) of this variable as Fc(x). Similarly, we will denote Fs(x)
the cdf under the stego hypothesis. Let us further denote α0

the FP rate that we are willing to tolerate. It follows that the
decision threshold associated with this FP rate is given by the
cover (1− α0)-quantile:

τ∗ = F−1
c (1− α0). (5)

To optimize for this threshold, the Neyman-Pearson lemma
states that the optimal test is the Likelihood Ratio Test, which,
in this context, maximizes the stego distribution above τ∗,
which is equivalent to minimizing Fs(τ∗).

For convenience, let φ(x) be the output logit of an image x,
and define Tn,Σ(φ) as the n-th top sample among φ(x), x ∈ Σ:∑

x∈Σ

[φ(x) > Tn,Σ(φ)] = n. (6)

B. Pat&Mat
Pat&Mat [1] (Precision At the Top & Mainly Automated

Tuning) is a framework for binary classification focused on
maximizing accuracy in low FP rate regions. For a given FP
rate α0, it estimates the threshold τ∗ using the nearest cover
logit at the (1 − α0)-quantile, denoted as tα. Optimization
then maximizes the separation between stego logits and this
threshold:

minimize
∑

s∈Strain

l(tα − φ(s)), (7)

subject to tα = T[α0·|Ctrain|],Ctrain(φ), (8)

where l(·) is a convex surrogate of a 0-1 loss, set as the
logistic function (4). While tα approximates τ∗, it remains
the closest cover logit rather than an exact estimate.

A key limitation is the need to estimate the (1 − α0)-
quantile across the dataset, restricting the original method
to linear classifiers. A minibatch-based stochastic gradient
descent was proposed, but optimization was limited to FP
rates of 10−2. This was improved in [13] by using larger
(20k-sample) minibatches for malware detection. However,
for CNN steganalyzers, GPU memory constraints significantly
reduce batch size, making quantile estimation unreliable for
smaller FP rates.

C. DeepTopPush

DeepTopPush [13] addresses the issue of insufficient batch
samples for quantile estimation by maximizing the true posi-
tive (TP) rate at α0 = 0. The algorithm iteratively tracks the
top cover sample, denoted t0, adding it to every minibatch dur-
ing training. If a cover image with a higher logit appears, t0 is
updated accordingly for subsequent training. The optimization
problem is formulated as:

minimize
∑

s∈Strain

l(t0 − φ(s)), (9)

subject to t0 = T0,Ctrain(φ), (10)

As in Pat&Mat, we use (4) as the convex surrogate of l(·).

III. PROPOSED METHOD

A. Motivation

As shown in Section IV, PatMat and DeepTopPush effec-
tively optimize for low FP rates compared to cross-entropy
loss (3). However, both have limitations.



PatMat requires large minibatches to estimate thresholds
accurately, needing ∼ 10

α0
images for an FP rate α0, which

is infeasible for α0 ≤ 10−3.1 With a batch size B, it we can
only estimate (1 − s/B)-quantile, where s ∈ {0, . . . , B − 1}
(B = 32 in our experiments). Consequently, choosing the
nearest sample of τ∗ will always select the largest sample in
the minibatch, whenever α0 < 1/B. This can be problematic
since the probability of randomly choosing a cover image
whose logit is above the τ∗ is α0. This means that in a vast
majority of optimization steps, the algorithm optimizes, in fact,
for much higher FP rates than prescribed.

DeepTopPush avoids this issue by tracking the running
maximum across all cover images, making it effective for
extremely low FP rates. However, for cases where a small
but nonzero FP rate (e.g., 10−6) is acceptable, optimizing for
those rates directly may yield better results.

Finally, both methods rely on a single cover sample to
compute gradients per optimization step, while the rest are
used only to estimate the threshold tα.

B. The MODE Loss

We propose a new loss function for low-FP-rate optimiza-
tion with two key improvements over previous methods:

1) Optimization for any given FP rate.
2) Leveraging all images (including covers) to better esti-

mate the threshold for FP rate α0.
1) Threshold estimation: Like Pat&Mat, we estimate the

(1−α0)-quantile τα from cover images but introduce two key
modifications. First, instead of selecting the nearest sample
tα, we compute a linear approximation of the cover empirical
cumulative distribution function (cdf) F̂c(x). Second, unlike
DeepTopPush which tracks only the top cover sample, we
track the top two to estimate the cdf slope for very small
α0. Note that we manually set the value of the cdf at the
second-highest sample to 1− 1/|Ctrain|.

Figure 1 illustrates this approach. In blue, we see an
empirical cdf from a given minibatch with B cover images,
which has 1/B spacing between the cdf values. Having the
linear approximation (dashed), we find the decision threshold
by inverting the cdf τα = F̂−1

c (1− α0). From the discussion
in the previous section, this estimate will in many cases
underestimate the actual threshold we are looking for. We
therefore add the top cover sample over the whole training
dataset to the minibatch and use its linear approximation
(green). Finally, a better estimate τα of τ∗ can be obtained
by adding the two top cover samples over the whole training
dataset (red).

We want to emphasize that various enhancements to this
linear cdf approximation are possible. On one hand, we can
consider a non-linear approximations, and on the other hand,
we can add more top samples to the minibatch to obtain the
correct quantile. To do so, we would need approximately k ∼
α0 · |Ctrain| top samples. In our experiments, |C| = 7000, so

1Using an NVIDIA V100 GPU (32GB RAM), we can fit up to 64 images
of size 512× 512 per batch.

we would need 7 top samples for α0 = 10−3. For simplicity,
we restrict ourselves only to the 2 top samples and linear
approximation of the cdf, leaving further improvements for
future work.

2) Optimization: Having estimated the threshold τα, we
formulate the steganalyst’s test with the detector’s logits as:

H0 : φ ≤ τα,
H1 : φ > τα. (11)

We then model the classifier’s output conditioned on the
observation x = φ − τα with Bernoulli distribution P (Y =
1|x = φ − τα) = p. Employing logistic transformation on p
to obtain the shifted logits x, we obtain p = σ(φ− τα).

Maximizing the likelihood
∏
i P (Y = yi|X = φi−τα) over

all images is then equivalent to minimizing the cross-entropy:

minimize
∑
i yi log pi + (1− yi) log(1− pi), (12)

such that τα = F̂−1
c (1− α), (13)

where the minimization (12) can be written as

min.
∑
i yi log(1 + eτα−φi) + (1− yi) log(1 + eφi−τα).(14)

This resembles PatMat (7),(8) with the exception that the
optimization is done on cover images too, and the threshold
τα is found from an approximation of the cdf F̂c(x). In fact,
this differs from a cross-entropy minimization (3) that uses a
zero threshold, only by considering a different threshold τα,
computed from the cover samples. We believe the proposed
strategy leads to a more stable estimation of the threshold τ∗

and thus a better separation of the cover and stego distribu-
tions. Indeed, using only the top two samples to estimate τ∗

can lead to a very noisy estimate in the case of heavy tail
distributions. A case which is circumvent by penalizing the
outlier cover images. We name the proposed loss function (14)
MODE: Maximizing Optimal Detector’s Efficiency.

IV. EXPERIMENTAL RESULTS

We now describe the dataset used to generate the datasets,
as well as the training strategy of the steganalyzer.

A. Setup

We use 10,000 grayscale uncompressed images (512×512)
from BOSSBase [2], split into training (7000), validation
(1000), and testing (2000) sets. Cover images are embedded
using HILL [12] at 0.3 bpp.

For JPEG images, covers are compressed with Libjpeg2 at
QFs 75, 95, and 100, then embedded with UERD [10] at 0.1
bpnzac.

We choose the JIN-pretrained [4] SRNet [3] as it allows us
to only refine the detector on a limited amount of data, instead
of training all of its parameters from a random initialization.
For every tested algorithm and loss function, we first train
this detector for 50 epochs using the Cross-Entropy (CE)
loss function (3), with 64 randomly selected images in every
mini-batch. The learning rate starts at 10−3 and is halved if

2http://libjpeg.sourceforge.net/
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Fig. 2: ROC curves for the tested loss functions with α0 = 10−3. From left to right: UERD, QF 75, QF 95, QF 100; HILL.

Loss α0 PE
PD(α)

10−3 10−2 10−1

CE - 0.1520 0.3505 0.5205 0.7765
DTP [13] 0 0.1577 0.4505 0.5645 0.7715
Pat&Mat 10−2 0.1617 0.4420 0.5730 0.7595

[1] 10−3 0.1577 0.4195 0.5635 0.7610

MODE 10−2 0.1483 0.4475 0.5815 0.7860
10−3 0.1500 0.4550 0.5810 0.7805

TABLE I: Results for various FP rates. HILL, 0.3 bpp.

validation loss stagnates for 3 epochs. We then refine the CE-
trained detectors for 50 more epochs with an initial learning
rate of 10−4, keepin all other hyperparameters as in [4].

Detection performance is measured by the TP rate PD(α)
(Detection probability), at FP rates α ∈ {10−1, 10−2, 10−3}.

B. Optimization at low FP rates

We now compare the proposed MODE with the standard
cross-entropy loss function (3), PatMat (7), and DeepTopPush
(DTP) (9). As mentioned in Section II, both PatMat and DTP
use the logistic surrogate loss function (4). Since we only have
2k testing images, we only target FP rates α0 ∈ {10−3, 10−2}
for PatMat and MODE. This is because we can get quite noisy
results for smaller α0 due to the lack of training/testing data.
It is important to point out that we used PatMat with a linear
approximation of the cdf, similarly as for MODE, however,
the minibatches are not augmented the same way. In practice,
we use the threshold τα, instead of tα visualized in blue in
Figure 1. Without this approximation, PatMat would behave
the same for the two testing FP rates based on the discussion
in Section III-A.

The specific values of true positives for given FP rates,
as well as PE are listed in Tables I,II,III, and IV. For
uncompressed images embedded with HILL (Table I), and
UERD at QF 100 (Table IV), MODE provides the overall best
performance with 2− 5% improvement over PatMat. Table II

Loss α0 PE
PD(α)

10−3 10−2 10−1

CE - 0.1090 0.4945 0.6675 0.8815
DTP [13] 0 0.1162 0.5525 0.6830 0.8625
Pat&Mat 10−2 0.1095 0.5645 0.6920 0.8770

[1] 10−3 0.1123 0.5890 0.7010 0.8720

MODE 10−2 0.1085 0.5600 0.6945 0.8805
10−3 0.1075 0.5530 0.6775 0.8835

TABLE II: Results for various FP rates. UERD, QF 75.

shows that for UERD at QF 75, all methods outperform cross-
entropy for α = 10−3 for at least 6%, while PatMat being
overall best by 1 − 2% over MODE. For QF 95 (Table IV),
PatMat and MODE perform very similarly for the smaller FP
rate, while MODE gets a 3% boost for α = 10−2.

The full ROC curves for α0 = 10−3 are shown in Figure 2
and we can see that DeepTopPush is indeed more optimized
for very low FP rates compared to the other methods, with
an exception at QF 95, although these values are extremely
noisy due to the testing set size of 2k images. A larger-scale
experiment will have to be performed in the future to further
validate our finding for smaller FP rates.

To summarize, the cross-entropy loss provides the best
results on PE, which for the given problems is quite close
to the FP rate at α = 10−1. However, the proposed method
improves the detection over the cross-entropy at α = 10−3 by
10%, 6%, 3%, and 14%, for HILL and the 3 quality factors
with UERD, respectively. For images compressed with QF
75, PatMat provides the best results, while for higher-quality
JPEGs and uncompressed images, MODE outperforms all the
other methods.

The code used for implementing MODE will be made
available on the authors’ website upon acceptance of the paper.

V. CONCLUSIONS

We have proposed MODE, a new method of optimizing
deep steganalyzers for small false positive rates. We add two



Loss α0 PE
PD(α)

10−3 10−2 10−1

CE - 0.2280 0.1535 0.2680 0.5990
DTP [13] 0 0.2760 0.1315 0.2745 0.5265
Pat&Mat 10−2 0.2357 0.1555 0.3105 0.5860

[1] 10−3 0.2390 0.1830 0.3020 0.5970

MODE 10−2 0.2395 0.1760 0.3375 0.5955
10−3 0.2402 0.1815 0.3320 0.5825

TABLE III: Results for various FP rates. UERD, QF 95.

Loss α0 PE
PD(α)

10−3 10−2 10−1

CE - 0.1520 0.2250 0.5440 0.7830
DTP [13] 0 0.1710 0.3595 0.5600 0.7445
Pat&Mat 10−2 0.1593 0.3090 0.5690 0.7720

[1] 10−3 0.1607 0.3180 0.5590 0.7730

MODE 10−2 0.1578 0.3295 0.5710 0.7815
10−3 0.1618 0.3695 0.5830 0.7715

TABLE IV: Results for various FP rates. UERD, QF 100.

top cover samples to each minibatch during the detector’s
training. The logits from these two samples are used to esti-
mate the right tail of the cover distribution and find a decision
threshold given by a desired FP rate. Using a surrogate logistic
function, this decision threshold is then used to optimize a
shifted cross-entropy loss function, which puts emphasis on
the desired FP rate.

We demonstrate on several JPEG quality factors, and on
uncompressed images that if the problem requires FP rates
close to 0, it seems that using DeepTopPush to optimize the
detector is the steganalyst’s best choice. However, as soon
as we can allow small FP rates, MODE leads to better true
positive rates outperforming, although by a small margin, other
state-of-the-art methods for deep learning steganalysis. Due to
a potential computational overhead on a large dataset, we only
considered targeting FP rates of 10−3 and 10−2.

Since the experiments were performed on a rather small
BOSSBase dataset, we plan to evaluate the method further
with more data in order to validate the method for small
FPs such as 10−5. Furthermore, the effect of batch size,
and the effect of using top K > 2 cover samples on the
estimate of the quantile will also be studied. Finally, non-linear
approximations of the empirical cdf will be investigated.

Our work contributes to the ongoing discussion surrounding
steganalysis as a security evaluation metric, highlighting the
need for more nuanced approaches that prioritize accuracy
over simplicity in real-world forensic scenarios. By exploring
novel optimization techniques and empirical evaluations of DL
models, we aim to provide actionable insights for researchers
seeking to improve their understanding of this complex field.
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