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ABSTRACT
Many portable imaging devices use the operation of
“trunc” (rounding towards zero) instead of rounding as
the final quantizer for computing DCT coefficients dur-
ing JPEG compression. We show that this has rather
profound consequences for steganography and its detec-
tion. In particular, side-informed steganography needs to
be redesigned due to the different nature of the round-
ing error. The steganographic algorithm J-UNIWARD
becomes vulnerable to steganalysis with the JPEG rich
model and needs to be adjusted for this source. Ste-
ganalysis detectors need to be retrained since a stegana-
lyst unaware of the existence of the trunc quantizer will
experience 100% false alarm.

Index Terms— Steganography, side-information,
trunc quantizer, steganalysis, JPEG

1. INTRODUCTION

Steganography in JPEG images is usually executed by
partially decompressing the JPEG file and modifying the
quantized DCT coefficients by at most ±1. To the best
of the authors’ knowledge, the entire bulk of previous
art on JPEG steganography assumes that the last step
of JPEG compression involves rounding the DCT coeffi-
cients to the nearest integer [16]. Such JPEG images will
be referred to as coming from the round source. As re-
cently pointed out in [1], however, many modern portable
imaging devices, such as iPhone 5c, Canon EOS 10D,
Samsung Galaxy Tab 3 8.0, replace the rounding with
“rounding towards zero” due to its easier (more efficient)
hardware implementation. We will refer to JPEG images
processed this way as coming from the trunc source.
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This paper studies both steganography and steganaly-
sis in trunc JPEGs. In the next section, we introduce
notation, datasets, and the setup of experiments. In
Section 3, we show that a steganalyst unaware of the
existence of the trunc quantizer will experience 100%
false alarm rate independently of the steganography and
the detector. We also show that steganography in trunc
JPEGs is more secure. In Sections 4 and 5, J-UNIWARD
and SI-UNIWARD stego algorithms are redesigned to re-
flect the specifics of the new source. The paper is con-
cluded in Section 6.

2. PRELIMINARIES

For simplicity, we only work with 8-bit grayscale images.
Pixel values and unquantized DCT coefficients in an 8×8
block will be denoted xij and dkl, 0 ≤ i, j, k, l ≤ 7. The
classical rounding operation will be denotedQround(x) =
[x] while the trunc quantizer is Qtrunc(x) = bxc for x ≥ 0
and Qtrunc(x) = dxe for x < 0, where bxc and dxe repre-
sent flooring and ceiling. Quantized DCT coefficients are
Q(·)(dkl/qkl), where qkl are the luminance quantization
steps. The rounding error during compression is defined
as ekl = ckl −Q(·)(ckl), where we denoted ckl = dkl/qkl.
All experiments are carried out on the union of

BOSSbase 1.01 and BOWS2 datasets, each with 10,000
grayscale images, resized from their original size 512×512
to 256×256 using imresize with default setting in Mat-
lab. Cover JPEG images coming from the round source
were obtained in Matlab using the command imwrite.
Cover JPEG images from the trunc source were obtained
in Matlab by applying Matlab’s dct2 on blocks of pixels,
dividing the coefficients by the quantization matrix, ap-
plying the trunc quantizer Qtrunc(x), and saving them to
a JPEG file using Phil Sallee’s jpeg_write. Decompres-
sion to the spatial domain for experiments with empirical
detectors was obtained by multiplying the DCT coeffi-
cients by quantization steps and applying a block inverse
DCT without rounding or clipping in Python by applying
’fftpack.idct’ with the parameter norm = ’ortho’, from



Python’s SciPy library, horizontally and vertically.
For training empirical detectors, we randomly selected

4,000 images from BOSSbase and the entire BOWS2
dataset with 1,000 BOSSbase images set aside for val-
idation. The remaining 5,000 BOSSbase images were
used for testing. In summary, 2×14, 000 cover and stego
images were used for training, 2 × 1, 000 for validation,
and 2×5, 000 for testing. This dataset and the split into
training and testing has also been used in [18, 19, 2].
For steganalysis, we selected the SRNet [2], the

cartesian-calibrated JPEG Rich Model (ccJRM) [14],
and Gabor Filter Residual features (GFR) [17] with the
FLD ensemble [15]. The ensemble was trained on the
union of the training and validation sets. For training
SRNet from scratch, we set the initial learning rate (LR)
to 10−3 for 400k iterations and continued for 100k more
iterations with LR 10−4 and batch size 32. When seed-
ing, we use LR 10−3 for 100k iterations and a lower the
LR to 10−4 for additional 50k iterations.

3. COMPARING THE SOURCES

For experiments in this section, we selected the stegano-
graphic algorithm nsF5 [7] with relative payload 0.2 bpn-
zac, J-UNIWARD [10] with payload 0.4 bpnzac, and
UED [8, 9] with payload 0.3 bpnzac.

3.1. Quantizer mismatch

First, we study what happens when the detector is un-
aware of the existence of the trunc source and uses a
detector trained on the round source for steganalysis of
trunc JPEGs. Experiments were executed with three dif-
ferent detectors for quality factors 85 and 100 and vari-
ous steganographic algorithms and payloads. To be more
specific, we trained a classifier for a given stego algorithm
(and fixed payload) on cover and stego images from the
round source. This detector was then tested on cover
and stego JPEGs embedded with the same stego algo-
rithm and payload but starting with trunc JPEG covers
instead. The end result was always the same – both cover
and stego images from the trunc source were detected as
stego irrespectively of the embedding algorithm, payload
and detector, with the false alarm rate ranging between
99.1% and 100%.
Fortunately, it is easy to reliably identify the type

of the DCT quantizer and build separate detectors for
each source. Table 1 shows the accuracy of a classifier
trained on two classes: cover JPEG images coming from
the trunc and round source for quality 85 and 100. The
training was stopped after 70k iterations, since the val-
idation accuracy already saturated at 100%. Note that
this detector correctly reveals the DCT quantizer even
when presented with stego images embedded with vari-

Algorithm Payload QF85 QF100
Covers 0 0.9999 0.9989
nsF5 0.2 0.9998 0.9987
JUNI 0.4 0.9999 0.9987
UED 0.3 0.9997 0.9987

Table 1. Accuracy of detecting the DCT quantizer. The
detector is the SRNet trained between cover classes from
the round and trunc sources and tested on 5,000 pairs of
images from each of the four sources.

ous payloads and different stego algorithms. Having this
classifier, from now on we will assume that the stegana-
lyst knows whether an image under investigation comes
from the round or the trunc source.

3.2. Effect of truncation on security

Since the histogram bin for zero coefficients in the trunc
source is twice as wide as all other bins, cover images in
trunc source have more zeros than covers in the round
source. For a fixed image, its “effective” size, the number
of non-zero DCT coefficients [13], is smaller in the trunc
source than in the round source. For a fair comparison of
the security of a given stego algorithm in both sources,
we thus adjust the size of the embedded payload accord-
ing to the square root law [13, 6, 12, 11]. The relative
payload in the trunc source, αtrunc, was scaled as

αtrunc = αround ·
√
Nround
Ntrunc

· log(Ntrunc)
log(Nround)

, (1)

where Ntrunc and Nround stand for the number of non-
zero AC DCT coefficients from a given image in trunc
and round sources, respectively. The accuracy1 shown
in Figure 1 were obtained with three different detec-
tors: SRNet and the ensemble classifier with JRM and
GFR features on the same embedding algorithms and
payloads as above. SRNets on quality 75 were trained
from scratch, while 95 was trained via curriculum train-
ing from 75. For nsF5, the network was first trained
on quality 95 from scratch and then retrained for the
smaller quality because the higher quality is more de-
tectable [3]. Note that even with the scaled payload, the
detection accuracy is larger in the round source across
all algorithms and detectors, indicating that it is harder
to detect steganography in the trunc source. A surpris-
ing exception is J-UNIWARD, which is best detected in
trunc source with JRM. As shown in the next section,
this is because J-UNIWARD embeds “too much” into
zero DCT coefficients, which are much more populated

1Accuracy for the ensemble with rich models is computed as
1 − PE, where PE is the minimum average total probability of
error.
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Fig. 1. Detection accuracy in the trunc source and the
round source when adjusting for the square root law for
J-UNIWARD, UED, and nsF5 with relative payloads 0.4,
0.3, and 0.2 bpnzac.

in the trunc source, and consequently introduces artifacts
detectable by JRM.

4. J-UNIWARD FOR TRUNC SOURCE

As mentioned in the previous section, J-UNIWARD in
the trunc source is best detected with the JRM because
it embeds too much into zero coefficients. Figure 2 top
left shows that stego images have significantly fewer zero
coefficients than cover images. This lead us to the fol-
lowing adjustment of the embedding algorithm.
For a fixed DCT mode (k, l), let βi be the average

J-UNIWARD change rate on such coefficients that are
equal to i in the cover image. If there are no coefficients
equal to i, we set βi = 0. Let ρi be the corresponding
“average cost”

ρi = 1/λ log(1/βi − 2), (2)
where λ > 0, is a Lagrange multiplier. We wish to adjust
ρ0 → ρ̃0 = ηρ0, η > 0, so that the new change rate of
zeros

β̃0 = e−λρ0η

1 + 2e−λρ0η
(3)

preserves on average the number of zero coefficients:

(1− 2β̃0)h[0] + β−1h[−1] + β1h[1] = h[0], (4)
where h[i] is number of cover coefficients equal to i. As-
suming β−1 = β1 and using log(1 + z) ≈ z for small
z > 0, (3) and (4) give

η = ρ1

ρ0
+ 1
λρ0

log
(

2h[0]
h[1] + h[−1]

)
. (5)

Computing the average change rate on coefficients
equal to 1 or −1, β|1| = (β−1 + β1)/2, from (2) and
(5)

η =
log(1/β|1| − 2)
log(1/β0 − 2) +

log
(

2h[0]
h[1]+h[−1]

)
log(1/β0 − 2) . (6)

Technically, the change rates in (4) have a different
Lagrange multiplier because, first, J-UNIWARD simu-
lator is used to compute the average change rates βi,
the costs of zero coefficients are then updated, and a
new Lagrange multiplier needs to be found to satisfy the
payload constraint. As indicated by our experiments,
however, the new Lagrange multiplier produced by such
modulation of costs on zero coefficients is almost iden-
tical to the original one, justifying thus our simplified
approach. Note that, if there are no coefficients equal to
1 or −1, the update rule (5) naturally sets the costs to
wet costs. We call this scheme J-UNIWARD with his-
togram correction (hcJ-UNIWARD). Figure 2 top right
shows that the embedding indeed roughly preserves the
number of zero coefficients.

To show that hcJ-UNIWARD is more secure than J-
UNIWARD across quality factors, we trained the SRNet,
the ensemble classifier with JRM features, as well as the
concatenation of JRM and the features extracted by the
SRNet (the 512-dimensional input to the IP layer) with
the low-complexity linear classifier [4]. The improvement
in security ranges from 7− 15% in terms of accuracy of
the best detector among the three detectors mentioned
above (see Figure 3).

5. SIDE INFORMATION

In side-informed JPEG steganography, the rounding er-
rors during the quantization of DCT coefficients are used
to modulate the embedding costs by 1− 2|ekl|. In trunc
source, however, the rounding errors have a different
range, and the modulation has to be adjusted. Note that
a modulation by 1− 2|ekl| would lead to negative costs.
Moreover, it does not correspond to what one would in-
tuitively expect because zero cost should be associated
with ekl ≈ 0 and |ekl| ≈ 1. In this section, we focus on
the ternary version of SI-UNIWARD [10, 5].

We propose to modulate by the minimum perturbation
of the precover that makes it quantize to the desired
stego value. Denoting ρkl(−1), ρkl(+1) J-UNIWARD’s
costs of changing the kl-th DCT coefficient by −1 and
+1, respectively, the side-information modulated costs
ρ′kl for cover DCT coefficients ckl that quantize to a non-
zero integer (|ckl| ≥ 1)
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Fig. 2. Boxplots showing the differences between
stego (0.4 bpnzac) and cover histograms of DCTs across
300 randomly selected images. From left to right by
rows: J-UNIWARD, hcJ-UNIWARD, SI-UNIWARD,
hcSI-UNIWARD.

ρ′kl(sign(ekl)) = (1− |ekl|)ρkl (7)
ρ′kl(−sign(ekl)) = |ekl|ρkl (8)

and for those that quantize to 0 (|ckl| < 1)

ρ′kl(+1) = (1− ekl)ρkl (9)
ρ′kl(−1) = (1 + ekl)ρkl. (10)

This makes good intuitive sense because when either
ekl ≈ 0 or |ekl| ≈ 1 the non-quantized coefficient ckl is
the most sensitive to noise and should be given a small
cost (modulation close to zero). The separate treatment
for coefficients that quantize to zero is necessary because
the quantization bin for zero is twice as large in the trunc
source. Indeed, when 0 < ckl < 1, ekl = ckl, and it takes
a perturbation of 1− ekl to quantize to 1 and 1 + ekl to
quantize to −1.

SI-UNIWARD was implemented and tested in the
trunc source for quality factors 75 and 95 at 1, 0.8, 0.6,
and 0.4 bpnzac. Starting with the largest payload, cur-
riculum learning was used to train on the next smaller
payload. Detection accuracy of the SRNet is shown in
Table 2. For the smallest tested payload, the algorithm
is practically undetectable, which validates the proposed
modulation of costs. Only SRNet’s accuracy is shown
because the detection power of the ensemble classifier
with JRM features was substantially worse.
We also implemented SI-UNIWARD with histogram

correction (hcSI-UNIWARD) in the same way we imple-
mented hcJ-UNIWARD, only this time, the modulation
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Fig. 3. Accuracy of the best detector in trunc source for
hcJ-UNIWARD and J-UNIWARD at 0.4 bpnzac.

bpnzac 1 0.8 0.6 0.4
QF75 0.8164 0.7436 0.6485 0.5653
QF95 0.7984 0.6972 0.6050 0.5420

Table 2. Detection accuracy of SRNet for various pay-
loads of ternary SI-UNIWARD in the trunc source.

factor (6) was computed with SI-UNIWARD’s average
change rates. This, however, decreased the security by
about 4%. We hypothesize that the modulation of costs
of zeros in SI-UNIWARD (9)–(10) already addresses the
problem with embedding into zeros too much because the
total cost of changing a zero is ρ′kl(+1)+ρ′kl(−1) = 2ρkl,
while for coefficients that quantize to a non-zero value,
this sum is ρkl. This is supported by the box plots in
Figure 2 bottom.

6. CONCLUSIONS

JPEG compressors that use rounding towards zero
(trunc) instead of rounding are common in portable elec-
tronic devices. This quantizer has profound implications
for steganography. Steganalyst unaware of the existence
of such a source will experience 100% false alarms. The
“trunc JPEGs” are more friendly to steganography than
“round JPEGs” even when adjusting the payload accord-
ing to the square root law. Moreover, and surprisingly,
J-UNIWARD’s embedding is faulty in trunc JPEGs as it
embeds too much into zeros. We describe an effective fix
for this problem. Finally, we also propose a novel modu-
lation of costs for side-informed steganography in trunc
JPEGs.
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