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Abstract—An antecedent of a JPEG image is any pixel-valued
image that gets compressed to this JPEG image. This paper
presents a novel robust JPEG steganography method based on a
JPEG antecedent search of a given stego image. This method can
be used whenever Alice is able to upload on an online platform
a pixel-valued stego image and when the platform compresses
the image. Since the antecedent search can be in some cases
rather long for specific JPEG blocks, we heuristically restrict
the number of search steps per block to a given threshold. Nev-
ertheless, we show that even with this limitation, we can achieve
errorless robustness against JPEG compression for payloads as
big as 0.5 bpnzac for various quality factors. Not only can we
ensure errorless robustness for uncompressed and compressed
images, but we also show that the proposed robustness update of
a given steganographic algorithm increases its undetectability. We
then verify that this security improvement comes from preventing
embedding changes in DCT blocks with saturated pixels. Finally,
we demonstrate that the proposed method outperforms previous
state-of-the-art robust steganography in terms of security with
feature-based and deep-learning detectors.

Index Terms—JPEG robustness, errorless, steganography,
JPEG antecedent

I. INTRODUCTION

Communicating privately is becoming increasingly impor-
tant not only for governmental entities but also for individuals
across various spheres. Steganography, the art of concealing
messages within other media, is one suitable tool for this
purpose. While significant emphasis has been placed in recent
decades on making steganography undetectable, its major
drawback is the absolute lack of robustness. In the context
of digital images, this means that the steganographic message
cannot be retrieved after typical post-processing operations,
such as downscaling or JPEG compression, which severely
limits the practical applicability of steganography in real-
world scenarios, necessitating greater efforts to enhance its
robustness. In this paper, we propose a modification of an
existing steganographic algorithm, which makes it robust
against subsequent JPEG compression without any additional
post-processing operations.

A. Contrast with prior art

Recent years have witnessed some advancements in the
field of steganography resilient against JPEG compression.
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In [1], Cleaves and Ker have studied the impact of lossy
transmission combined with syndrome trellis code (STC) [2],
demonstrating that the STC replicates the errors associated
with the channel on the decoded payload. They propose a dual-
STC scheme combined with Reed-Solomon Error Correcting
Codes to reduce the error rate while minimizing the embedding
distortion, although this scheme has not been benchmarked
against steganalysis.

Other methods such as Sign Steganography Revisited
(SSR) [3] or MINImizing Channel Error Rate (MINICER) [4]
prioritize robustness over security, making steganography
much more detectable. Moreover, while both SSR and
MINICER, could potentially provide small bit error rates in
some limited scenarios, it was shown [5] that in a practi-
cal setting, they are, in fact, not robust. Given the critical
nature of steganography, the scheme must exhibit extremely
high robustness, as a single erroneous bit can jeopardize the
entire transmission since the payload is most of the time
encrypted. Therefore, errorless steganographic methods are
recommended.

To the best of the authors’ knowledge, the only errorless
robust technique has been proposed by Butora et al. [5]. This
method divides the image into 64 non-overlapping lattices and
iteratively calls the JPEG compressor as an oracle to assess
which embedding changes are robust. Although this approach
provides errorless robustness, it is limited since the embedding
must be done into a JPEG image compressed with the same
quantization table as the one the robustness is targeted against.
In other words, Bob can receive only images compressed twice
with the same quantization table.

In contrast, our proposed method takes a different approach,
where a pixel-valued image is created and mapped through the
compression to the desired stego image. This is achieved by
embedding into the compressed cover image and searching
for its JPEG antecedent (see Section II-A), which is a slightly
modified version of the decompressed stego image. This fun-
damentally distinguishes our method from [5], which allows
the steganographer to only send JPEG files. The scheme of
the proposed method is illustrated in Figure 1. Additionally,
the authors note that the precover image does not need to
be uploaded to an online platform if the JPEG compressor
is known, as the upload can be simulated offline, avoiding
unnecessary suspicion. Having access to the JPEG compressor



Precover Cover image

Stego image
Stego

antecedent

Upload (JPEG compression)

Upload

Antecedent search

JPG

Embedding with
 non-robust costs If any block

unsolved

If all blocks
solved

Cost update

Decompression

Fig. 1: The proposed errorless JPEG robust steganography scheme. Alice uploads her precover image (uncompressed or
compressed) to an online platform, which JPEG compresses the image to the cover image. Alice downloads the cover image
and embeds into it a message with given steganographic embedding costs, thus creating the stego image. She then finds the
stego antecedent and uploads it to the platform, which compresses it to the desired stego image. Note that in the scenario
considered in the paper, Alice has access to the JPEG compressor and thus does not have to upload the image online.

is the main requirement of our method, as searching for the
antecedent requires potentially many calls to the compressor.

B. Outline of the paper

In the next section, we introduce the JPEG antecedents and
how they are used to build a robust steganographic scheme.
Section III describes the experimental setup, Section IV lays
out the paper’s main results, and the paper is concluded in
Section V.

II. PROPOSED METHOD

In the following, we introduce the JPEG antecedents, how
to search for them, and how to use them to create an errorless
robust steganography method from existing steganographic
costs.

A. JPEG Antecedent

A cover image is a natural image compressed with a
specific JPEG Quality Factor (QF). Note that the cover image
can be a single-compressed JPEG or an image compressed
multiple times. This is the image that gets uploaded to the
platform when Alice does not use steganography. A stego
image is a modified version of the cover image carrying the
steganographic message aimed for Bob. A stego antecedent
is then a pixel-valued image (uncompressed or decompressed
JPEG) that gets JPEG compressed to the desired stego image.
The pixel-valued image that created the cover image is referred
to as the precover, which is one specific antecedent of the
cover image.

Note that in the current application scenario, Alice does
not have to practically upload her cover image, which could
create suspicion if Eve is able to monitor the platform. Instead,
having access to the JPEG compressor, she can simulate the

JPEG compression on her side. This is the main requirement
of the proposed method, but it is not too constraining as it is
reasonable to assume that many online platforms use standard
JPEG compression libraries, such as libjpeg.

The JPEG antecedents were originally studied for steganal-
ysis of JPEG compressed images at QF 100 with no false
positives [6], where it was shown that some DCT blocks have
no pixel antecedents and are thus manipulated.

B. Antecedent Search

The antecedent search algorithm is explained in detail in [7]
but for better clarity, we will provide a brief overview of the
method in this paragraph. The main requirement for finding
a correct antecedent is to have access to the compressor,
even if only in a black-box framework. Let C and D denote
respectively the JPEG compressor of interest and a decom-
pressor function, where the decompression is done with the
mathematical definition of the 2D Inverse Discrete Cosine
Transform (IDCT) and the result is rounded and clipped to
the dynamic range of 8-bit images [0, 255]. Furthermore, let
q be the quantization table used during the compression. The
algorithm described in Algorithm 1 is applied independently
to each 8× 8 block of the image.

The algorithm can be divided into two parts: the initial-
ization and the exploration loop. In the initialization phase,
we decompress the stego block c to obtain a first pixel-block
candidate xs = D(c,q). To verify if this initial candidate is a
correct antecedent, we apply the compressor to it. If the result
equals the stego block, C(xs,q) = c the algorithm has found
an antecedent that will be compressed to the stego block and
the search terminates.

If the output does not match the stego block, we have an
initial pixel-block candidate that is not an antecedent, and



Algorithm 1 Local search to find antecedent

Require: c,q {Stego block and quantization table}
Require: C,D {Compressor and decompressor}
Require: N > 0 {Max iteration}

xs ← D(c) {Starting pixel-block of the search}
add xs to P with cost 0 {Priority queue initialization}
k ← 0 {Search step initialization}
while P not empty and k ≤ N do
k ← k + 1
x← remove first element of P
for xn in neighbors(x) do

if xn has not been visited then
if C(xn;q) = c then

return xn {xn is an antecedent of c}
end if
γn ← ‖c− C(xn;q)‖1
add xn to P with cost γn {xn is a new candidate}

end if
end for

end while
return unsolved {Antecedent was not found in N steps}

we proceed to the exploration loop. For a given number of
iterations, we make ±1 changes to every position of the
candidate. This creates 128 new candidates (2 changes for
each 64 position in the block), and each one is compressed
using the compressor. Then, for each candidate, we compute
the `1-norm between the compressed candidate and the stego
block: γ = ‖c − C(xn;Q)‖1. If this distance is 0, we have
found an antecedent and terminate the search. Otherwise, we
select the candidate with the smallest distance γ and go to the
next iteration. The algorithm either finds an antecedent within
the prescribed number of search steps N or returns unsolved
if the antecedent was not found.

Note that the algorithm is very similar to a path-finding
algorithm such as A-star but differs from it because of the
cross-domain search: we modify the pixel domain but the
target is in the DCT domain.

Note also that although unsolvable blocks exist for JPEG
Quality Factor (QF) 100 [7], the algorithm should be able to
find an antecedent for any block compressed with lower QF
given enough time (search steps). However, such a search can
be potentially very time and energy-consuming, and we thus
limit ourselves to N = 10 in this work, which can result in a
larger number of unsolved blocks, even for lower QFs. This
heuristic provided an acceptable trade-off between robustness
and embedding speed.

C. Errorless Robust embedding

Let ρ denote an 8 × 8 block of given embedding costs of
some JPEG steganography algorithm associated with a stego
DCT block c. We describe in the following an efficient way
of constructing the stego antecedent. Three distinct scenarios
can arise for a given block:
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Fig. 2: Ratio of antecedents found with 10 steps of search in
double-compressed JPEG images. Only embedded blocks are
considered. The values are averaged over 100 randomly se-
lected images, each of which was embedded with 5 payloads:
0.1,0.2,0.3,0.4, and 0.5 bpnzac.

1) The block was not modified during the embedding. In
this case, we simply use the precover block, as it is
already an antecedent.

2) The block has been modified and an antecedent was
found. In this case, we use the found antecedent.

3) The block has been modified and antecedent was not
found. In this case, we set all the embedding changes to
wet costs [8], i.e. ρ←∞.

If an antecedent is found for every block, then we have
successfully found the stego antecedent and this is Alice’s
image she will be sending to the compressor (online platform).
However, if any of the antecedents were not found, the image
has to be re-embedded with the updated wet costs to avoid
embedding into blocks for which it requires more than 10 steps
of the search to find an antecedent. The described procedure
is shown visually in Figure 1.

Even though this may seem like a severe constraint of
the embedding algorithm, we observed in practice that the
number of unsolved blocks decreases rapidly during every
re-embedding, making up to 5 re-embeddings for every im-
age. Moreover, due to the content-adaptive nature of modern
steganography, in many blocks, the same exact embedding
changes are preferred (and performed), which further speeds
up the embedding process, as their antecedents have already
been found. This also holds when embedding with the STCs
since freezing some coefficients is equivalent to preferring
certain paths through the trellis over others in a small local
neighborhood of the embedding path.

It is worth mentioning that the embedding capacity conse-
quently decreases and a desired message could potentially not
be possible to embed with the updated costs, but we did not
observe this behavior for the considered embedding payloads.
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Fig. 3: Robust set size with 10 steps of antecedent search
in single-compressed JPEG images. Only embedded blocks
are considered. The values are averaged over 100 randomly
selected images and results for 5 payloads (bpnzac) are shown.

III. EXPERIMENTAL SETUP

To experimentally verify our robust methodology and its
impact on steganographic security, we use 10, 000 uncom-
pressed grayscale images of size 512 × 512 from the BOSS-
Base dataset [9]. To generate single-compressed and double-
compressed cover JPEG images, we use a publicly available
python implementation1 of libjpeg.

For the steganographic algorithm, we picked UERD [10]
due to its embedding speed. We will refer to its robust version
using the proposed methodology as R-UERD. We simulate
the embedding with optimal coding for different payloads 0.1,
0.2 0.3, 0.4, and 0.5 bits per non-zero AC DCT coefficient
(bpnzac).

To evaluate security, we report the probability of error
under equal priors PE. On one hand, we use the DCTR
features [11] with low-complexity linear classifier [12] using
balanced training and testing image splits. On the other hand,
we use the SRNet [13] pre-trained on steganalysis in the
ImageNet database [14]. The training, validation, and testing
splits for the deep learning detector are of size 7k, 1k, and 2k,
respectively. The detector has been refined for every QF and
payload separately by training for 50 epochs with the rest of
the hyper-parameters set as in [14].

IV. RESULTS

A. Antecedents and Robustness

First, we investigate the robustness in double-compressed
images, re-compressed with the same quality, as a direct
comparison can be made to the robust method in [5]. We only
investigate the robustness in embedded blocks, as for the non-
embedded blocks, the antecedent is trivially found from the
precover image.

1https://gitlab.cristal.univ-lille.fr/elevecqu/incompatible-jpeg-blocks

QF Method Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

75 R-UERD 0.5 0.4138 0.3258 0.1693
UERD 0.4998 0.4074 0.3165 0.2274

95 R-UERD 0.5 0.4995 0.4311 0.3125
UERD 0.5 0.5 0.4077 0.2983

TABLE I: Detection error of DCTR features on single com-
pressed images.

QF Method Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

75 R-UERD 0.1322 0.0503 0.0198 0.0098
UERD 0.1055 0.0370 0.0155 0.0065

95 R-UERD 0.2800 0.1450 0.0870 0.0470
UERD 0.2290 0.1225 0.0702 0.0330

TABLE II: Detection error of SRNet on single compressed
images.

We can observe on the diagonal in Figure 2 that the robust
set size for double-compressed images drops to roughly 50%
at QF 95, which is in line with the results obtained in [5] (see
Fig. 7). Moreover, we see that the robust set size is very close
to 100% whenever the quality factor of the first compression is
higher than the quality of the subsequent compression, QF1 >
QF2. We explain this by higher granularity in a high-quality,
single-compressed image which allows us to find correct pixel
modifications in the antecedent causing desired effect in the
DCT domain of the re-compressed image.

On the contrary, the small robust set size for cases with
QF1 < QF2 are of no practical interest due to their extreme
detectability with the Reverse JPEG compatibility attack [15].

For the single compressed images, we see in Figure 3 that
the robust set sizes are very similar to the double-compressed
case (re-compression with the same QF) with an exception at
QF 95 where the robust set size is around 93.5%. Once again,
we conclude that higher-quality images are more suitable for
finding the antecedents.

These results are likely susceptible to the maximum number
of the antecedent search steps N , and we plan to further study
its effect in the future.

B. Security Evaluation

The detection results of DCTR for the robust R-UERD and
non-robust UERD in single-compressed images are shown in
Table I. Surprisingly, we can notice that the robust version
is, in fact, in many cases less detectable than the original
UERD. This is even more obvious in Table II with the results
of SRNet, where the robust version is always more secure, up
to 5% in terms of PE for 0.1 bpnzac at QF 95.

A similar conclusion can be made for double-compressed
images after inspecting the results in Tables III and IV, where
the security gain is negligible with DCTR and reaches up to
3% with SRNet. Moreover, we see that compared to the other
robust method [5], our method is consistently less detectable
with SRNet, up to 2.8% for the highest payloads and QF 95.
This is an interesting result, as our method is faster and allows

https://gitlab.cristal.univ-lille.fr/elevecqu/incompatible-jpeg-blocks


QF Method Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

75
R-UERD 0.4658 0.4006 0.3101 0.1669

[5] 0.4990 0.3968 0.3200 0.1620
UERD 0.5000 0.4116 0.3362 0.1612

95
R-UERD 0.5000 0.4761 0.4392 0.3102

[5] 0.4999 0.4956 0.3426 0.2141
UERD 0.5000 0.4705 0.4329 0.3780

TABLE III: Detection error of DCTR features on double-
compressed images with the same quality factor. The best
values for robust algorithms are put in bold.

QF Method Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

75
R-UERD 0.1273 0.0470 0.0193 0.0070

[5] 0.1328 0.0445 0.0180 0.0068
UERD 0.1163 0.0415 0.0173 0.0050

95
R-UERD 0.2767 0.1470 0.0810 0.0453

[5] 0.2745 0.1283 0.0593 0.0170
UERD 0.2438 0.1268 0.0715 0.0390

TABLE IV: Detection error of SRNet on double compressed
images with the same quality factor. The best values for robust
algorithms are put in bold.

Alice to send uncompressed images, but also to combine
different quality factors for double-compressed images.

C. Why robustness increases security?

In this section, we are going to explain the peculiar security
gain through robustness. First, let us remind the reader that
given enough antecedent search steps, the R-UERD should
be equal to UERD, as antecedents exist, at least for single-
compressed images with a quality factor below 100. This
means, that by avoiding embedding into blocks for which we
have not found antecedents fast enough, we improve security.
We hypothesize that these blocks are containing saturated
pixels, as the search algorithm clips the saturated pixels
into the range [0, 255], as explained in Section II-B, which
potentially creates complications for the search algorithm.

To verify this hypothesis, we embedded 10 randomly se-
lected images at QF 95 with payload 0.1 bpnzac and inspected
the blocks that were tagged by the search algorithm as
unsolved. We obtained this way 883 blocks and computed
a per-block minimum and maximum of their 64 pixels. The
results, visualized in Figure 4, show that 50% of all these
blocks contain at least one saturated pixel (whether at 0 or
255). This is in line with our hypothesis that the increased
detectability of UERD is due to the embedding into blocks
with saturated pixels.

To verify this hypothesis even further, we embedded our
database with UERD but set all the embedding costs in
all blocks that have any saturated pixels (0 or 255) to wet
costs to prevent embedding in them. We only conducted
this experiment on single compressed images with QF 95
embedded with payloads 0.1, 0.2, 0.3, and 0.4 bpnzac. The
detection error rates with SRNet are shown in Table V.

0 50 100 150 200
Min. pixel value in unsolved blocks

50

100

150

200

250

M
ax

. p
ix

el
 v

al
ue

 in
 u

ns
ol

ve
d 

bl
oc

ks

Fig. 4: Minimum and maximum pixel value of 883 unsolved
blocks across 10 randomly selected image. Embedding was
done on QF 95 compressed images with 0.1 bpnzac. Roughly
50% of all the blocks contain at least one saturated pixel.

Comparing these to the results on R-UERD, we can observe
two things. One, this updated UERD algorithm improves the
security even further, outperforming it by more than 1% in
terms of PE for the two smaller payloads, providing overall
benefit over original UERD of up to 6.1%. Secondly, for
the two larger payloads, R-UERD is as detectable as UERD
without embedding into saturated blocks. We can thus safely
conclude that this is indeed the main reason for the security
improvement. Nevertheless, this method remains non-robust.

We find it surprising that avoiding embedding into saturated
pixels has been already mentioned in the context of natural
steganography [16], however modern spatial and JPEG domain
steganographic algorithms do not prohibit embedding into
saturated pixels. We plan to investigate further the effect of
these saturated pixels on steganographic security in the future.

Note that while we used only a simulation of optimal coding
instead of practical codes, such as the STCs [2], the proposed
method does not rely on a specific coding algorithm as we
only modify a subset of the embedding costs to wet costs
and look for the antecedent after the stego modifications are
performed. Consequently, our method is immediately usable
with practical codes.

QF Method Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

95 UERD
0.2900 0.1615 0.0848 0.0480(no saturation)

R-UERD 0.2800 0.1450 0.0870 0.0470

TABLE V: Detection error of SRNet on single-compressed
images embedded with UERD without embedding into blocks
with saturated pixels and the robust UERD.



V. CONCLUSIONS AND PERSPECTIVES

We have presented a novel errorless robust JPEG steganog-
raphy method based on JPEG antecedents. The main require-
ment is that the JPEG compressor for which we want to
be robust has to be available to the steganographer, even if
only as a black box. Any JPEG steganographic method can
be used to create a stego image and an antecedent search is
then performed to find the antecedent - an image that gets
compressed to the desired stego image. If this is not possible
within an allocated time, embedding into blocks for which
antecedents were not found is forbidden and the process is
repeated.

Unlike previous robust methods, our approach allows em-
bedding into single-compressed images but also combining
different quality factors in the double-compression pipeline, as
long as the second compression is not of higher quality than
the first one, without suffering from any undesirable errors
during the JPEG lossy compression.

It was observed that the proposed method is more secure
than its non-robust version, which we then attributed to
embedding into blocks with saturated pixels which is highly
detectable.

In our future work, we plan to study the effect of saturated
pixels on steganographic security in more detail for JPEG and
uncompressed images. We will further expand the proposed
method by using the side-information in the form of compres-
sion rounding errors, which requires white-box access to the
JPEG compressor. Furthermore, we want to investigate the
effect of different quality factors in the double-compression
pipeline on steganographic security. Next, the effect of the
maximum number of antecedent search steps on the robust set
size and on the embedding time will be studied. Finally, we
believe that the JPEG antecedents can be used to construct
a steganographic method for double-compressed images re-
compressed with the same quality, resilient against the Reverse
JPEG compatibility attack.

The code to reproduce the results in this paper is made
available on https://janbutora.github.io/downloads/
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