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Errorless Robust JPEG Steganography
using Outputs of JPEG Coders

Jan Butora, Pauline Puteaux and Patrick Bas

Abstract—Robust steganography is a technique of hiding secret
messages in images so that the message can be recovered after
additional image processing. One of the most popular processing
operations is JPEG recompression. Unfortunately, most of today’s
steganographic methods addressing this issue only provide a
probabilistic guarantee of recovering the secret and are conse-
quently not errorless. That is unacceptable since even a single
unexpected change can make the whole message unreadable
if it is encrypted. We propose to create a robust set of DCT
coefficients by inspecting their behavior during recompression,
which requires access to the targeted JPEG compressor. This is
done by dividing the DCT coefficients into 64 non-overlapping
lattices because one embedding change can potentially affect
many other coefficients from the same DCT block during
recompression. The robustness is then combined with standard
steganographic costs creating a lattice embedding scheme robust
against JPEG recompression. Through experiments, we show that
the size of the robust set and the scheme’s security depends on
the ordering of lattices during embedding. We verify the validity
of the proposed method with three typical JPEG compressors
and the Slack instant messaging application. We benchmark its
security for various embedding payloads, three different ways
of ordering the lattices, and a range of Quality Factors. Finally,
this method is errorless by construction, meaning the embedded
message will always be readable.

Index Terms—robust steganography, recompression, lattice
embedding, JPEG

I. INTRODUCTION

With the wide usage of social networks and sharing plat-
forms, the classical setup of steganography, which implies
a lossless channel between Alice (the steganographer who
embeds a payload) and Bob (the steganographer who decodes
a payload), is meaningless in a lot of practical scenarios.
This is due to the fact that the transmission channel involves
a transcoding of the stego content (a JPEG recompression,
for example) which can be seen as a noisy channel between
Alice and Bob. In such a case, the errorless decoding of
the payload is not possible anymore if Alice uses classical
embedding schemes designed for lossless transmission (e.g. in
the JPEG domain with the use of J-Uniward [1], UERD [2],
J-Mipod [3], ...). Moreover, note that if the embedded payload
is encrypted – which is usually the case for security reasons
– decoding the embedded message is not possible as soon as
one bit of the payload is changed.

A. Prior Works on Robust Steganography

The domain of robust steganography aims at keeping the
main constraint of steganography (i.e. to embed an unde-
tectable payload) but also adds the constraint of robustness,
which can be defined as minimizing the bit error rate on the
decoded payload after a lossy transmission channel. Note that

this second constraint (robustness) is very similar to the one
defined in watermarking. For this reason, secure watermark-
ing [11] could hypothetically be considered as an option to
embed robust and undetectable payload [12]. However, the
proposed schemes in the watermarking literature never consid-
ered either steganalysis to benchmark undetectability or large
embedding rates. In watermarking, the payload characterizes
an identifier of several dozens of bits, not a message of several
kilobits.

In [4], Cleaves and Ker both study the impact of lossy
transmission combined with syndrome trellis code (STC) [13].
They show that the STC replicates the errors associated with
the channel on the decoded payload. They propose to use a
dual-STC scheme combined with Reed-Solomon (RS) Error
Correcting Codes (ECC) to reduce the error rate while min-
imizing the embedding distortion. This scheme is, however,
not benchmarked w.r.t. steganalysis.

Zhang et al. proposed to mix a watermarking scheme [5]
based on the modifications of DCT coefficients [14] and a
steganographic scheme [1] to favor embedding on coefficients
which are both robust and secure by weighting the cost related
to J-UNIWARD. Unfortunately, the proposed scheme is very
detectable (e.g. PE = 5% at quality factor QF = 75 and
0.1 bpnzAC). The payload also needs to be protected using
RS-ECC, and the error rate is still essential for large QF (19%
at QF = 95).

In [15], Qiao et al. propose to select robust cover elements,
which are defined as robust because they are not equal to zero
after double compression. Unfortunately, this scheme suffers
from at least two drawbacks: 1) Alice has to transmit the set
of robust elements to Bob as side information, and 2) the
payload is still subject to errors, and the detectability is, by a
large amount, more important than the non-robust scheme.

Tao et al. propose the idea to generate an intermediate image
after embedding by the mean of “coefficient adjustment” [6].
This image is a modified version of the stego image, and the
modifications are computed to cancel the modifications due
to an ideal JPEG coding scheme. A similar idea to invert
the JPEG compression scheme was developed by Lu et al.
by combining coefficient adjustment with an auto-encoder
predicting the input image [7]. In both cases, the changes
made to the intermediate image increase the detectability of the
modified stego image. The practical implementation of finding
a perfect intermediate image is also questioned in [7] due to
convergence issues. The authors adopt another strategy using
the auto-encoder, but it cannot cancel all the modifications due
to coding.

Recently, Zhao et al. [8], proposed successive compressions
of the cover image to reduce the number of changes after
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Reference Strategy Errorless Side information ECC Filtering before recompression
[4] Dual STC No No Yes No
[5] Watermarking No Yes Yes No

[6] and [7] Coefficient adjustment No No No No
[8] Successive recompressions No No Yes No
[9] Non-robust set selection No No Yes Yes

[10] Sign modification No Yes No No
Ours Robust set selection Yes No No Yes

TABLE I
COMPARISON BETWEEN DIFFERENT SCHEMES IN THE FRAMEWORK OF STEGANOGRAPHY ROBUST TO JPEG COMPRESSION.

embedding and compression. This method is effective but has
the disadvantage of generating (recompressed) cover images
that are different from natural ones, hence more detectable.
The proposed scheme also uses BCH-ECC to decrease the
error rate after embedding.

One of the most recent works, Sign Steganography Re-
visited (SSR) [10], uses the sign of the DCT coefficients to
communicate the secret message. The method is checking for
every DCT mode if there is a coefficient that will change its
sign during recompression. If that is the case, it will prohibit
embedding into this DCT mode. To this end, the steganogra-
pher needs to additionally communicate the robustness of all
64 DCT modes as a side-information.

The last line of research on this topic is the scheme called
MINImizing Channel Error Rate (MINICER) [9]. The algo-
rithm first recompresses the cover images, then checks if an
embedding change would create a so-called ‘overflow’, which
means that there is a pixel with value outside of the interval
[0,255] after decompression. If so, the algorithm considers
such embedding change as non-robust by setting its embed-
ding cost to infinity. The recompressed cover image is then
embedded with modified costs and specific DCT coefficients
are changed back to the original single-compressed cover
value in order to create a single-compressed stego image. This
algorithm can also deal with filtering before recompression.

While both SSR and MINICER, could potentially provide
small bit error rates in some limited scenarios, we will show
in Section V-D that in a practical setting, they are, in fact, not
robust.

It is important to note that, due to the practical context of
steganography, the scheme’s robustness has to be extremely
high, as only one erroneous bit can jeopardize the whole trans-
mission. Errorless steganographic schemes are consequently
recommended. Regarding robustness to image scaling, several
works address this issue for different downsampling kernels,
such as the nearest neighbor kernel or the bilinear kernel,
where only pixels that are respectively preserved (see Zhang
et al. [16]), or contribute the most (see Zhu et al. [17]), are
modified. To the best of our knowledge, errorless robust JPEG
steganography has not been investigated before.

B. Outline of the Paper

This paper proposes an errorless steganographic scheme in
the JPEG domain robust to JPEG recompression. As summed
up in table I, the advantages of this scheme are to be errorless
(it can be guaranteed that generated stego will not produce any
error at the embedding), so not convey any side-information

for payload extraction, to not rely on the use of Error Cor-
recting Codes (ECC). Moreover, the embedding enables to
guarantee robustness even when filtering is applied before re-
compression.

Section II presents both the security setup (i.e. the knowl-
edge of the embedder) and the coding setup (i.e. the JPEG
coding process). Section III details an algorithm proposed to
use the output of JPEG coders to extract a set of robust coef-
ficients according to a specific scanning strategy. Section IV
presents the embedding and decoding algorithms together with
a strategy to spread the payload into 64 lattices. Section V
presents results on the detectability of the proposed scheme
and compares it with naive embedding. A robustness analysis
is also proposed when JPEG coding uses rate-optimization
strategies.

II. CONSIDERED SETUPS

A. Notations

A bold capital letter is considered as a matrix, and a
lowercase letter denotes a coefficient. (i, j) denotes the pixels
or coefficients coordinates i and j.

B. Security Setup

Robust steganographic schemes can be split into two cate-
gories, schemes which assume that the compression param-
eters are either known or unknown. The scheme that we
present here belongs to the first category. Its security setup
is illustrated on the top diagram of Fig. 1.

Alice, the embedder, sends a stego image, denoted S1, on
a platform that compresses S1 into S2 using a JPEG coder.
Bob, the receiver, downloads the image from the platform and
tries to decode the payload. Because we assume that Alice’s
cover, denoted C1, is also in the JPEG format, the image
is consequently double-compressed. Note that the setup is
equivalent to classical (lossless) steganography if the platform
does not recompress the uploaded image. In the following, we
consider that the platform does compress the uploaded image.

We assume that Alice knows both the coding scheme and the
coding parameters used by the platform. Practically, this can
be done by inspecting the uploaded-downloaded images. The
JPEG quantization matrix is public, and the coding scheme
can often be identified by comparing the uploaded/downloaded
image with the outputs of different coders.

Note that this setup follows the Kerckhoffs’ principle, which
states that anything not related to the secrecy of the application
(here, the fact that a payload is potentially transmitted to Bob)



3

Original
Cover
Image
(JPEG)

Platform:
Cover and 

Stego
contents

Upload , JPEG
Recompression

Upload , JPEG
Recompression

Robust 
embedding
Alice

Steganalysis
Eve

Decoding
Bob

Payload, Key

Key

Payload

Image
(JPEG)

Inverse 
DCT

transform

Coefficient 
Scaling Rounding

Decompressed
Image
(pixel)

DCT
transform

Entropic
decoding

Quantization table

Quantization

Entropic
coding

(rate-distortion 
optimisation)

Uploaded
Image
(JPEG)

Decompression Recompression

Upload , JPEG
Recompression

<latexit sha1_base64="TFQNuNS0g+QABqzen5PFMLWPI6c="></latexit>

C1

<latexit sha1_base64="iweQY9zIRdPKfaN6oXfcSmZeBHg="></latexit>

S1
<latexit sha1_base64="y38cFTXg7Q3vq3MILmBQ1FvsK/A="></latexit>

S2

<latexit sha1_base64="Xna3Z4vbXvLL49NIiDp9dbui4S8="></latexit>

C2
<latexit sha1_base64="Xna3Z4vbXvLL49NIiDp9dbui4S8="></latexit>

C2

<latexit sha1_base64="TFQNuNS0g+QABqzen5PFMLWPI6c="></latexit>

C1

Fig. 1. Considered setups for robust steganography after JPEG compression: the top diagram represents the whole chain of processes and the different players
(Alice, Bob, and Eve), see also Section II-B. The bottom diagram depicts the different operations involved in the uploading process, see also Section II-C.
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Fig. 2. Example of DCT coefficient changes after decompression and
recompression (QF = 100). Changes in the pixel or JPEG domain are displayed
in bold and dark red.

should be considered public. Within this setup, the steganalyst
Eve has access to the platform. She can also download images
to try to differentiate an uploaded cover content (denoted C2)
from an uploaded stego content (S2).

In order to minimize the difference between the uploaded
image (respectively C1 or S1) and the downloaded image
(respectively C2 or S2), we assume that the uploaded image
is already coded with the same coding parameters than the
downloaded image. We assume first that JPEG compression is
the only process done during the upload on the platform, which
means that the uploaded image is already resized correctly in
order to prevent any resizing operation. This assumption is
rather practical since it is usually the case on many platforms
such as Facebook, WhatsApp, FlickR [18], [19] or Slack. Note
that in section III-E we also consider the case where a size-
invariant filter is applied to the image before compression.

C. JPEG Coding Setup

Firstly, we recall the main features of the JPEG coding
scheme. Without loss of generality, we assume that the original
image is coded as greyscale. Still, the same methodology
regarding the embedding mechanisms described in Sections III
and IV can be applied on color channels, with or without sub-
sampling.

- The original image is first decomposed into disjoint blocks
of size 8× 8 pixels.

- Each block is then transformed into 64 DCT coefficients
using the specific DCT type-II transform.

- Each coefficient is then quantized according to a quanti-
zation matrix specific to the coding algorithm and each DCT
mode.

Note that there is a specific relation between the JPEG
quality factor QF and the quantization matrix, but depending
on the implementation of the coder, this relation can be dif-
ferent. For example, the Libjpeg library1, associated with the
convert command, uses the classical relationship proposed
by the standard (see [20], Section IV). On the contrary, the
mozjpeg library2 uses ad hoc quantization tables.

- For each block, the coefficients are scanned using a zigzag
order.

- Depending on the coding scheme, the lossless entropic
coding scheme can be different: the quantized coefficients are
either directly coded using Run Length Coding and Huffman
Coding, or a rate-distortion optimization procedure is applied
to change the magnitude of several coefficients to increase the
coding rate.

Note that in the first case, the coefficients and blocks are
independently coded, but in the second case, there is an
interplay between the possible coefficient values and the length
of the produced code. The potential use of the rate-distortion
procedure depends on the implementation. For example, the
Libjpeg library does not implement by default any rate-

1http://libjpeg.sourceforge.net
2https://github.com/mozilla/mozjpeg
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distortion procedure, but the mozjpeg library implements by
default a Viterbi algorithm relying on a trellis.

The upload of a JPEG image on the platform consists
in decompressing and then recompressing the image (see
Fig. 1, bottom). Before recompression, the JPEG image is
decoded by first performing entropic decoding, coefficient
scaling according to the quantization matrix, and inverse DCT
transform. This is a lossy process because once decompressed,
the pixel values are rounded to integer values between 0 and
255. This rounding operation in the pixel domain can modify
a fraction of the DCT coefficients after recompression. Such
an effect will be particularly significant (but not only) on
blocks containing pixels initially clipped to 255 since, after
decompression, the clipping may change the magnitude of
DCT coefficients (see example depicted in Fig. 2).

D. An example: Slack instant messaging

In this section, we want to give a real-world example of
where robust steganography is needed. As a representative, we
chose the Slack application for instant messaging3. During our
experiments tested on MacOS Version 4.31.156, we learned
that given a JPEG image, Slack does, in fact, recompress the
image before transmitting it to the receiver. As such, standard
steganographic tools cannot be used, as the recompression
would destroy the embedded message. This paper aims to
propose a steganographic scheme that is robust to such a
process. We learned that the recompression in Slack produces
the exact same DCT coefficients and quantization tables as if
produced by convert (see Section IV) without specifying
any compression quality parameters.

convert input_name.jpg output_name.jpg

This process is equivalent to the use of the closest standard
quantization table of input_name.jpg during the genera-
tion of output_name.jpg. This allows us to simulate the
Slack recompression by simply locally calling the convert
compressor. All the results reported for convert are thus
directly applicable to the communication on the Slack social
network.

III. ROBUST EMBEDDING

A. Overview of the Embedding Algorithm

This section presents the robust embedding strategy. For
better readability, we outline the general idea of the embedding
scheme and only then describe the details of every mechanism
involved.

First, we define a robust coefficient and how to extract the
set of robust coefficients. Since one embedding change can
potentially affect the robustness of many DCT coefficients
from the same 8× 8 block, we divide the image into 64 non-
overlapping lattices (one per DCT mode) and perform the
embedding iteratively on every lattice separately. We assume
for simplicity that every 8 × 8 block is coded independently
during the JPEG compression (we shall see in Section V the
impact of this assumption when it is not the case).

3https://slack.com

Then, we show how to use the robustness of the coefficients
during embedding. And finally, we look at how much payload
shall be embedded in each of the 64 lattices.

The scheme of the embedding procedure is shown in Fig. 3.

B. Robustness

For ease of understanding, we introduce several definitions.

Definition III.1 (Processed modes). Given k-th DCT mode
(with a pre-defined ordering of modes), k ∈ {1, . . . , 64},
denote Pk = {1, . . . , k − 1}, P1 = ∅ the set of all modes
that have already been processed by the algorithm.

Definition III.2 (Pseudo-stego). The k-th pseudo-stego is the
cover image with already embedded lattices from Pk.

We will describe the process for a single 8 × 8 block
of single-compressed DCT coefficients of the k-th pseudo-
stego c = {cn}64n=1 ∈ Z64. Let in ∈ Z64 be a vector
containing i ∈ Z at n-th coordinate and zeros elsewhere. Let
R(c, in) ∈ Z64 denote the recompressed DCT coefficients of
(c+ in).

Definition III.3 (Robust coefficient). We say a coefficient
ck is robust towards an embedding change i ∈ {−1, 1}, if
during recompression it:

(R1): Does not change processed modes:

∀l ∈ Pk : R(c, ik)l = R(c,0)l.

(R2): Preserves a change by i:

R(c, ik)k = ck + i.

(R3): Preserves no change:

R(c,0)k = ck.

The sets of all robust coefficients towards +1 and −1 are
denoted R+

k and R−
k respectively.

If a coefficient does not belong to a robust set, we say
it is non-robust. The set of all non-robust coefficients is
denoted R0

k.

Note that without (R1), embedding in the k-th lattice would
destroy the message encoded in a lattice l ∈ Pk, which would
make the secret message unreadable.

(R2) states that the embedding change needs to survive the
recompression.

(R3) gives us a choice during the embedding, whether to
change the coefficient or not. We want to point out that a
coefficient can belong to both sets R+

k and R−
k .

We illustrate these conditions graphically with a 3×3 DCT
block (for the sake of simplicity) in Fig. 4.

From the construction of the robust sets, the non-robust
coefficients are coefficients ck, such that either R(c,0)k 6= ck,
or R(c, ik)k 6= ck+i, i ∈ {−1, 1}. In either case, it is essential
to note that even though we cannot have control over the
recompressed coefficient, we can compute its value R(c,0)k.
We can see that this was, in fact, the case for one of the already
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Fig. 3. Main steps of the embedding algorithm.

processed modes (0,1) in Fig. 4: its value changed from 3
to 2, but it does not prevent us from correctly embedding.
For practical implementation with STCs, we perform standard
embedding on the robust sets (with their possible embedding
values) and do not change the non-robust set. This is done
by setting their corresponding embedding costs to wet costs.
Since we do have access to R(c,0), we are still able to encode
the message in the trellis. Section IV explains the embedding
mechanism in further detail.
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Fig. 4. Mechanism for deciding robustness of a DCT coefficient. Left:
DCT coefficients c and their recompressed values, Right: Possible effects of
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each associated with one condition R1, R2, or R3, assign the coefficient to
a non-robust set. Only if the last two situations arise is the coefficient robust
towards 1.

C. Lattice Embedding

To embed a given lattice, we need to compute the robust
costs. Let ρ+, ρ− denote the embedding costs (computed
from a given steganographic algorithm) of changing a DCT
coefficient c by +1 or −1. The robust costs ρ̃+, ρ̃− are created
by updating the original costs:

ρ̃± = ρ±, c ∈ R+ ∩R−,

ρ̃− =∞, c ∈ R+,

ρ̃+ =∞, c ∈ R−,

ρ̃± =∞, c ∈ R0.

(1)

In other cases, we keep ρ̃+ = ρ+ and ρ̃− = ρ−.
Let αk be the portion of the total payload we desire to

embed in the k-th lattice. For practical embedding, we would
provide the embedding costs and payload to STCs to perform
the embedding. However, in this work, we simulate the optimal
embedding. Therefore we find the optimal change rates:

β±
k =

e−λρ̃
±
k

1 + e−λρ̃
+
k e−λρ̃

−
k

, (2)

where λ > 0 is the Lagrange multiplier ensuring that we
embed the desired payload

N∑
n=1

H3(β
+
n , β

−
n ) = αk,

and H3(β
+, β−) is the ternary entropy function

H3(β
+, β−) =

−(1−β+−β−) log(1−β+−β−)−β+ log β+−β− log β−.

Having the optimal change rates, the coefficients from this
lattice are embedded. That concludes the embedding of the
given lattice, and we move on to the next.

D. Payload Spreading

Since our proposed method embeds iteratively 64 non-
overlapping lattices, we need to decide a priori what portion
of the embedding payload is carried in every lattice. Therefore,
we compute the so-called “Initial robust set” for every lattice



6

– the robust set without any embedding change. Let α denote
the total payload in bits we want to embed. Having the robust
sets R+,R−,R0, we update the embedding costs (Eq. (1))
and compute the optimal change rates (Eq. (2)) for the whole
image. From these change rates, we compute the proportion
of payload αk in every lattice:

αk =

N∑
n=1

H3(β
+
n,k, β

−
n,k),

where β±
n,k is the n-th change rate in the k-th lattice. At this

stage, it is possible that we cannot communicate the desired
payload because of the small size of the robust set. In such a
situation, we have no choice but to use a different image or a
smaller secret message.

We are also well aware that there could be another potential
issue during actual embedding with this approach of spreading
the payload among lattices. In particular, the robust set in the
k-th lattice could be of a very different size after embedding
the previous lattices. As a result, we would not have enough
robust coefficients to use for embedding a prescribed payload
αk. However, in practice, we observed that the size of robust
sets in each lattice changes in a negligible way, see Fig. 8.

E. Filtering before recompression

The presented algorithm can be easily extended to be robust
to a filtering operation (e.g. blurring, sharpening, ...) occurring
before the re-compression. This processing can be done on the
platform to improve the rendering of the image once published.

Assuming that the filter window size is smaller or equal
to 8× 8 pixels, this filtering operation can propagate changes
between one block and its 8 neighbors, but not between non-
adjacent blocks. We need in this case to embed separately in
9 extra macro-lattices, i.e. sets of JPEG blocks that are distant
by 16 pixels in one or two directions as depicted in Fig. 5. The
final number of lattices in this case is consequently multiplied
by 9.

One might wonder why 4 macro-lattices are not enough.
The answer relies on the fact that each mode is affected by the
same {−1, 0,+1} change and recompression. Consequently, if
after one embedding operation, one change occurs in a block
belonging to a previously visited macro-lattice, there is an
ambiguity to know which of the two neighboring blocks is
responsible for the change.

F. Number of calls to the compressor

In the end, with only recompression the embedding requires
3× 64× 2 calls to the compressor : one for each embedding
modification in the set {−1, 0, 1} multiplied by the 64 DCT
modes multiplied by the number of steps necessary to perform
the embedding, i.e. the estimation of the robust set for payload
spreading and the payload embedding. If the robustness has to
deal with filtering and compression, then the number of calls
equals 9×3×64×2. Note that a call to a JPEG compressor is
rather fast and the (UERD) embedding operation robust to the
compressor takes about 10s on a Macbook Pro with M1 chip
on a 512×512 image and the convert compressor, and 90s

when filtering is involved. Note that the filtering makes the
scheme 9 times slower because we need to consider 9 times
more lattices, as explained in the previous section.

1 2 3 1

4 5 6 4

7 8 9 7

1 2 3 1

8

8

Fig. 5. The 9 macro-lattices used to be robust to filtering.

IV. PRACTICAL IMPLEMENTATION

2 4 1 3

2 4 0 3

1 5 0 3

1 5 1 3

1 5 0 3

Fig. 6. Practical embedding of i-th lattice with Syndrom-Trellis Codes: Alice
sends a bitstream which takes into account the recompression R(.) in order
to be compliant with both the STC coding and decoding processes. The costs
ρ are also chosen in order to deal with non-robust modifications.

In this section, we want to detail the technicalities necessary
for actual embedding. First, JPEG compression is significantly
impacted by the compressor. We consider three different
JPEG compressors in this work: ImageMagick’s convert,
mozjpeg (by default with rate-distortion optimization), and
mozjpeg without optimization ( -notrellis option). As
mentioned earlier in Section II-C, the main difference between
these compressors is the quantization tables used. Specifically,
mozjpeg uses stronger quantization (bigger quantization
steps) than convert. This harsher quantization positively
affects the robustness of an image. In Fig. 7, we show the
average initial robust size over 10 images compressed with
the three compressors across a range of quality factors and
with the random scanning strategy (see Section IV-A for more
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Fig. 7. Relative robust set size average over 10 cover images. Top: Random
scanning strategy, bottom: convert.

details about scanning strategies). We can see that for quality
factors above 80, the images compressed with convert have
a smaller robust set than those compressed with mozjpeg
without the rate-distortion optimization. This is especially true
around quality factor 90, where convert has a sudden drop
in the robust set size. Strangely enough, convert’s robust
size jumps back 93% for qualities 91 and 92. Although we
are not sure why exactly this phenomenon is happening, we
are convinced it is related to the quantization tables because
we are unaware of another substantial difference between
the compressors. Additionally, we can notice that disabling
mozjpeg’s rate-distortion optimization increases the robust
set size, mainly for qualities below 95.

A. Scanning Strategies

Secondly, we can notice that in the definition of Processed
modes, we assumed a given ordering of DCT modes. We
consider three natural scanning strategies:

1) Low-High: Scan modes in a zig-zag manner from low
to high-frequency modes (as done in JPEG),

2) High-Low: Reverse the order of Low-High, and
3) Random: Randomly assign ordering of modes in every

8× 8 block.4

We will see in Section V that these three strategies will
affect the empirical security of the embedding scheme.

Next, a scanning strategy dictates the size of the robust set
in every lattice. In Fig. 8, we show the relative size of the

4The pseudorandom key used for generating the permutations can be a part
of the secret key.
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Fig. 8. Proportion of robust coefficients in every lattice during embedding.
The solid line corresponds to a cover image (Initial robust set), while the
crosses mark a stego image embedded with 0.8 bpnzAC. The first three figures
are from a single BOSSBase image of size 512× 512 without any saturated
pixels across three scanning strategies. The last figure shows the robustness
of an image with 32% of its pixels saturated and random scan.

robust set across all 64 lattices. The top two plots show the
Low-High and High-Low scanning strategies for an image
without saturated pixels, while the bottom plots show the
Random scanning strategy for a non-saturated and a greatly
saturated image. We can make several interesting observations
from this figure. Robustness at QF 95 is generally smaller
than for QF 75. This is to be expected, as bigger quantization
steps (lower quality) provide more robustness against recom-
pression. Similarly, since mozjpeg’s quantization steps are
mostly bigger than those of convert, mozjpeg yields on
average better robustness. We observe that the Random scan
linearly decreases the robustness as we proceed through the
lattices. It is important to realize that in the Random strategy,
one lattice does not correspond to a DCT mode, as every block
is scanned in a different random order. This ensures a relatively
equal payload across all lattices, which allows us to skip the
computation of the Initial robust set. In contrast, the first two
scanning strategies assign one lattice per DCT mode, and it
can be seen (especially for QF 95, convert) that most of
the payload is carried in the low-frequency modes because
their robustness decreases drastically. Finally, the saturation of
pixels reduces the robustness due to the clipping of pixels into
the dynamic range [0, 255] during recompression. During our
experiments, all non-saturated images exhibit a similar trend,
while robustness tends to decrease with increasing saturated
area. Interestingly, we can also notice that the size of the
Initial robust set in every lattice is not very different from
the robust set of an image embedded with 0.8 bpnzAC. This
justifies our payload allocation based on the Initial robust set
(see Section III-D). If it were not the case, there would be a
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Fig. 9. Detection errors with convert.
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Fig. 10. Detection errors with mozjpeg without rate-distortion optimization.
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Fig. 11. Detection errors with mozjpeg with rate-distortion optimization.

risk of having a lattice with a robust set that is too small for
the desired payload.

B. Syndrome-Trellis Coding

Lastly, we explain how to use the proposed methodology
for practical embedding with Syndrome-Trellis Codes (STC).
Fig. 6 shows Alice’s action on a single lattice. Given i-
th pseudo-stego, she will take the i-th lattice as a vector
and inspect its recompressed values to asses the coefficients’
robustness. She will then perform embedding on the recom-
pressed lattice according to Section III-C. However, she cannot
simply send the output of the coding mechanism because
the channel’s recompression can potentially change the non-
robust coefficients, which would prevent Bob from reading
the secret message. Instead, Alice puts the original non-robust
coefficients (before recompression) back into the lattice, which
yields the (i+1)-th pseudo-stego. This way, it is ensured that
after the recompression, Bob will be able to decode the secret
message.

For the actual STC implementation, we used a python
wrapper of a C++ implementation, with the height constraint
h = 10.5 With this particular implementation, we observed

5https://github.com/daniellerch/pySTC

an undesirable behavior when the message size is ‘too small’
(e.g. less than 0.5% of the changeable elements), namely the
codes would make an embedding change of magnitude 2.
While this would not happen often, it would ultimately destroy
the communicated message. Since this seems to be the STC
implementation flaw, we discarded the experiments affected
by this phenomenon. From a practical point of view, this is
not an issue, as the steganographer can easily verify if the
coding mechanism created such an embedding change and
either embed the cover image again or discard this combination
of image/message for transmission.

V. RESULTS

The goal of this section is to benchmark the different
characteristics of the proposed scheme within the framework
of robust steganography. The considered setup will be the same
as the one depicted in Fig. 1 and recalled in Section II-B,
i.e. the steganographer will embed its payload on a single-
compressed image and submit it on the platform that will
compress the stego image. On the other side, the steganalyst
will observe contents that are published on the platform,
i.e. contents which are double-compressed, either in their
cover or stego version. The lossy coding algorithm and used
parameters by the steganographer and the platform will be
identical. The considered figures of merit are the following:
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Emb. rate Scan Coder 94 95 96 97 98 99 100(bpnzAC)
0.1 all all 100 100 100 100 100 100 100
0.2 Random and High-Low all 100 100 100 100 100 100 100
0.2 Low-High convert 100 100 99.98 99.72 94.53 89.95 99.97
0.2 Low-High mozjpeg, no optim 100 100 100 99.98 98.22 88.25 99.89
0.2 Low-High mozjpeg, optim 100 100 99.98 99.98 99.44 92.91 99.92
0.3 Low-High convert 100 99.13 99.05 71.18 44.03 25.09 30.07
0.3 High-Low convert 100 100 100 100 100 100 20.21
0.3 Random convert 100 100 100 100 100 87.09 27.12
0.3 Low-High mozjpeg, no optim 100 100 99.08 99.05 58.13 28.99 30.24
0.3 High-Low mozjpeg, no optim 100 100 100 100 100 100 19.93
0.3 Random mozjpeg, no optim 100 100 100 100 99.99 98.31 27.55
0.3 Low-High mozjpeg, optim 100 100 99.96 99.89 72.74 45.64 49.37
0.3 High-Low mozjpeg, optim 100 100 100 100 100 100 63.5
0.3 Random mozjpeg, optim 100 100 100 100 99.98 99.39 57.82
0.4 Low-High convert 100 99.95 84.53 34.9 18.8 10.18 7.96
0.4 High-Low convert 100 100 100 100 100 100 4.82
0.4 Random convert 100 100 100 100 99.98 33.12 6.65
0.4 Low-High mozjpeg, no optim 100 100 99.94 96.71 23.03 11.85 7.89
0.4 High-Low mozjpeg, no optim 100 100 100 100 100 100 4.83
0.4 Random mozjpeg, no optim 100 100 100 100 99.97 59.59 6.63
0.4 Low-High mozjpeg, optim 100 100 99.92 98.07 39.73 22.34 19.97
0.4 High-Low mozjpeg, optim 100 100 100 100 100 100 34.83
0.4 Random mozjpeg, optim 100 100 100 99.98 99.97 76.0 26.61

TABLE II
EMBEDDING SUCCESS RATES FOR DIFFERENT JPEG QUALITY FACTORS (IN %) WITH CONVERT AND MOZJPEG WITH AND WITHOUT RATE-DISTORTION

OPTIMIZATION.

• The practical security of the robust scheme for different
scanning strategies and JPEG compressors. It is also
important to compare it w.r.t. the naive embedding which
is not robust but maximizes the security and can be
considered as a baseline.

• The embedding success rate, i.e. the probability to be able
to embed the prescribed payload. The size of the robust
set being limited, for high-quality factors, the robust set
may be too small on several images.

• The impact of the compressor, such as mozjpeg
or convert (used by the Slack application, see
Section II-D), which can use specific quantization
matrices or can optimize the rate-distortion trade-off and
which can change quantization values before applying
Huffman coding.

These different features are evaluated using a classical
steganography/steganalysis setup:

• Images from BOSSBase [21] in greyscale format are used
as a source of covers. Images in the pixel/PGM format
are used as pre-covers and then compressed with the
appropriate compressor.

• Regarding steganography, UERD [2] is chosen as the em-
bedding scheme because it offers a good tradeoff between
complexity and practical security. Different payload sizes
ranging from 0.1 bpnzAC to 0.4 bpnzAC are adopted.

• Regarding steganalysis, DCTR features [22] are com-
bined with the regularized linear classifier [23].
5,000 pairs of images are used for training, and
5,000 pairs for testing.

• The classical probability of error Pe minimizing the sum
of false positive and false negative rates during training
is reported as a measure of practical security.

Different quality factors, ranging from 50 to 100, are re-
ported to analyze the evolution of the mentioned features
w.r.t. JPEG quantization. Note, however, that there is a sub-
stantial discrepancy between the quantization matrices used by
libjpeg/convert and mozjpeg, the quantization steps
used by mozjpeg being always greater or equal to the
quantization steps used by convert.

Note also that, except when explicitly mentioned in the
case of rate-distortion optimization, the proposed scheme is
errorless. Consequently, no error-correcting codes need to
be used, and no error transmission probability needs to be
reported.

A. Practical security

Fig. 9, Fig. 10 and Fig.11 present respectively the detection
error Pe for respectively convert, mozjpeg without (option
-notrellis added) and mozjpeg with the rate-distortion
trade-off.

Several remarks can be drawn from this extensive set of
experiments.

a) On the impact of the scan strategy: The strategy of
randomly picking the DCT modes for each lattice offers a gain
of practical security w.r.t. to scans starting with low frequen-
cies or high frequencies except for very high-quality factors
(i.e. ≥ 95). For quality factors below 85, the gain associated
with the random scan is between 2 and 5% w.r.t. the other
scans. However, one can choose the scan starting with low-
frequency modes for high-quality factors. It is also interesting
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to notice that starting with low frequencies is, on average, a
better strategy than scanning the high frequencies first, even if
the size of the robust set is far larger with the second option
(see Fig. 8). We can see that there is a tradeoff between the
size of the robust set and the modes it considers as robust.

On one side, the high-frequency modes are more robust
since they are associated with bigger, hence more conservative,
quantization steps; on the other side, they are more detectable.

Note also that, on average, the random-scan strategy has to
be preferred because of its higher security and its possibility
to spread the payload without first computing the robust set
(see Section IV).

b) On the gap between robust and non-robust embedding:
When comparing with the most favorable embedding strategy,
we can observe that, at 0.1 bpnzAC, the gap is very small
(i.e. below 3% in terms of detection error) but becomes
substantial (i.e. reaching more than 10% for few quality
factors) for larger embedding rates and high-quality factors.
This is not surprising since we have seen in Section IV that the
size of the robust set tends to decrease w.r.t. the quality factor,
which means that the embedding algorithm has to perform
more embedding changes. Indeed, for the same payload size,
the number of embedding changes decreases w.r.t. the number
of changeable coefficients. The larger detectability is also due
to the fact that the non-robust coefficients initially associated
with small embedding costs in a non-robust setting cannot be
modified anymore with the proposed scheme. They are lost
for embedding.

c) On the impact of the quality factor: For the convert
coder, we can notice a “bump” for quality factors between 90
and 100, which is associated with an increase of detectability
w.r.t. the non-robust scheme. For the mozjpeg coder, we
can also observe oscillations of the overall detectability. We
hypothesize that these two phenomena are due to the interplay
between DCT modes quantized with specific steps. From
Fig. 7, we can observe that the oscillations in terms of
detectability are on par with the ones coming from the size
of the robust sets. Note also that part of the non-monotony of
the detectability is also due to the quantization tables only and
was already observed for plain JPEG steganography [24].

d) On the impact of the coder: If, as reported above,
the different quantization tables used by the two coders are
associated with different detectabilities, we can also notice
that whenever the mozjpeg coder uses rate-distortion opti-
mization, the practical detectability is smaller. If we noticed
that the payload size is smaller (the number of 0s increases
by about 10% after the optimization), it is probably not the
only reason since the same decrease of 0s is observed between
convert and mozjpeg without optimization.

We hypothesize that the produced cover images with opti-
mization are also more “secure” sources since they have less
isolated non-zero modes due to the optimization process.

e) On the impact of filtering: In Fig. 12 we show how
the maximum embedding capacity changes if we addition-
ally process the decompressed image before recompression.
We used convert at two different quality factors and a
Low-High scanning strategy. Two operations are considered:
3×3 blurring with Gaussian kernel and 3×3 sharpening (both

available in convert). The capacity was computed assuming
optimal coder allowing to communicate 1 bit per coefficient
robust towards one embedding change and log2 3 bits per
coefficient robust towards both embedding changes. We can
see that both processing operations decrease the capacity from
up to log2 3 bits per coefficient (bpc) to less than 0.35 bpc at
QF 75, and at QF 95, the maximum capacity decreases from
0.3 − 0.45 bpc to less than 0.06 bpc, preventing the sender
from using bigger messages. Moreover, since the attainable
payloads are so small, the security suffers as well, because the
steganographer simply cannot commit to embedding changes
associated with small embedding costs. At 0.1 bpnzAC, the
probability of error is 3% for QF 75 and 1% for QF 95
respectively. However, despite increased detectability and lim-
ited embedding capacity, the robustness of the method is still
guaranteed.
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Fig. 12. Maximum embedding capacity evolution with extra spatial filtering
over 100 randomly selected images with convert and Low-High scanning
strategy.

f) Detectability with SOTA detectors: Because of the
increased complexity of Deep Learning steganalyzers, we
provide only limited evaluation with JIN-SRNet [25], [26]. In
Table III, we show the detection error rates for the proposed
scheme with a Low-High scanning strategy and original (non-
robust, single-compressed) UERD. Interestingly enough, the
proposed scheme is in most cases more secure than the original
UERD in single-compressed images. We believe this is due
to preventing some ‘easy-to-catch’ embedding changes during
the recompression process. Most importantly, we see that our
robust methodology does not increase the detectability even
with a state-of-the-art detector.

g) Detectability before and after recompression: As a
side-experiment, we also performed steganalysis on Cover or
Stego images before recompression (this would be equivalent
to a practical scenario where Eve has access to inputs (C1,S1)
of the platform in Fig. 1), and we did not notice any gap
between the practical security of the scheme before or after
recompression.

B. Embedding success rate

We analyze here when the embedding fails, i.e. when the
payload size is too small or too large to not modify only robust
coefficients.

1) Impact of a small robust set: Because the size of the
robust set can be limited, the maximum embedding capacity
for ternary embedding can be smaller than log2(3) ' 1.58 bit
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Method QF Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

Proposed 75 0.1392 0.0525 0.0195 0.0088
95 0.2742 0.1420 0.0403 0.0085

UERD 75 0.1155 0.0428 0.0197 0.0075
(non-robust) 95 0.2423 0.1195 0.0735 0.0330

TABLE III
DETECTION ERROR OF SRNET WITH CONVERT AND LOW-HIGH

SCANNING STRATEGY.

Method QF Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4 0.5 0.6

Proposed

75 100 100 100 100 100 100
92 100 100 100 100 100 99
95 96 95 92 92 80 73

100 0 0 0 0 0 0

[9]

75 0 0 0 0 0 0
92 0 0 0 0 0 0
95 0 0 0 0 0 0

100 0 0 0 0 0 0

[10]

75 0 0 0 0 0 0
92 0 0 0 0 0 0
95 0 0 0 0 0 0

100 0 0 0 0 0 0

TABLE IV
STC EMBEDDING SUCCESS RATES (IN %) FOR DIFFERENT EMBEDDING
SCHEMES WITH CONVERT AT QUALITY FACTORS 75, 92, 95, AND 100.

THE PROPOSED METHOD WAS COMBINED WITH THE RANDOM SCANNING
STRATEGY. HEIGHT CONSTRAINT OF THE STC WAS SET TO h = 10.

per coefficient. If the prescribed embedding rate (chosen to
be in bpnzAC) is larger than the maximum achievable rate,
we consequently report an embedding failure. Table II reports
the embedding success rate computed on the BOSSBase
database for the different coders, different scanning strategies,
embedding rates ranging from 0.1 bpnzAC to 0.4 bpnzAC,
and different quantization factors. We can draw several con-
clusions:

• For QF ≤ 94, the embedding success rate reaches 100%,
but the higher the quality factor, the less robust the
embedding is. This is due to the fact that, in this range
of quality factors, the size of the robust set decreases.

• The Low-High scan is less robust than the Random scan,
which is less robust than the High-Low scan. This is
coherent with the size of the robust sets, which follow
the same trend (the robust set associated with the Low-
High is smaller than the robust set associated with the
Random scan, which is smaller than the one associated
with the High-Low) plotted in Fig. 7

• The mozjeg coder with rate-distortion optimization is
more robust than the same coder without optimization,
which is, in turn, more robust than the convert coder.
Again, this is coherent with the hierarchy on the robust
set size, plotted in Fig. 7.

2) Impact of STCs: Since the above analysis is assuming
optimal coding mechanism, we now investigate the effect of a
practical coding scheme, the STCs. Table IV shows embedding
success rate across different methods while using convert
coder. We consider the embedding to be successful, only if the
whole secret message can be retrieved from the recompressed
image. We can see that our method starts failing only for high

qualities and with increasing payload. This is due to the small
robust set size, which in turn forces the (sub-optimal) STC to
embed into a non-robust coefficient. This is in line with the
sudden drop in robust set size for qualities above 92 depicted in
Fig. 7. Note that this could be already verified at the sender’s
side and the steganographer can thus avoid sending a non-
robust stego image. This problem is inherently related to the
use of STCs and the fact that for very low or very high payload
sizes, wet costs can be used.

C. Impact of rate-distortion strategies

This last experiment investigates to what extent the rate-
distortion strategy, which is used by the mozjpeg coder to
decrease the file size by changing DCT coefficients values
and to decrease their associated Huffman code length, is
detrimental to the robustness of the scheme. This is conducted
out of curiosity since we know in advance that the proposed
scheme is not robust to change of coefficient after quantization.
Fig. 13 shows the ratio of images that can convey the payload
when this option is activated.

Here we can see two behaviors:
1) For quality factors ≤ 95, starting with low-frequency

coefficients increases the correct extraction rate sig-
nificantly. For quality factors > 95, starting with the
High-frequency coefficient offers the best extraction rate.
Moreover, there is an overall drop in extraction rate for
quality factors > 95, which is caused by reduced robust
set size (see Fig. 7).

2) The larger the embedding rate, the smaller the number
of images having a correct extraction. However, we can
note that in a favorable setting (Low to High scan and
QF below 95 at 0.1 bpnzAC), the ratio of the correctly
extracted payload is larger than 60%.

D. Comparison with prior art

In Table V, we compare the security of the proposed method
at JPEG qualities 75 and 95 to those of MINICER [9] and
SSR [10]. To have a fair security comparison without any
issues caused by STCs, we only used simulated embedding.
Because the SSR method changes the sign of DCT coefficients
during embedding, we see very small detection errors across
all payloads for both quality factors. The MINICER, on the
other hand, has a security performance comparable to the
proposed method at QF 75 and is even more secure at the
higher quality. We explain this by the fact that MINICER
assigns wet costs to all the DC modes during its cost update.
This is a detail worth commenting upon because we observed
in our experiments that the DC mode is producing the most
robust coefficients. We, therefore, believe that MINICER does
this update simply for security reasons. We will not follow
this logic because we are not designing a new steganographic
scheme, but instead are giving a general methodology for
robust steganography. To this end, our main objective is the
robustness of a given embedding scheme.

Finally, we would like to point out that even though
MINICER is less detectable than our method, Table IV shows
that both [9] and [10] are not robust in any of the studied
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Fig. 13. Correct extraction rate (in %) for mozjpeg with rate-distortion optimization for different embedding rates.

cases, while our method is fully robust at the lowest quality
and more than 90% robust even at quality 95 for payloads
below 0.5 bpnzAC. This can be explained by studying the
two methods in a little bit more detail. We learned that [10]
relies on the fact that embedding changes do not change the
sign of the DCT coefficients. It is practically not true because
many embedding changes are performed on coefficients equal
to ±1. Consequently, after recompression, the sign of these
coefficients can change with a high probability to zero. More
importantly, the robust set computed by the method is very
small because instead of robust coefficients, the method uses
robust DCT modes, where a DCT mode is robust if all of its
coefficients are robust. As such we were not able to robustly
embed a payload bigger than 0.01 bpnzAC. The method [9], on
the other hand, assumes that DCT coefficients are changed dur-
ing recompression only in blocks containing saturation. This is
however not the only case. We observed that steganographic
embedding changes combined with recompression can also
cause other coefficients from the same DCT block to change,
which gravely affects the robustness of [9].

Note that the scheme proposed in the paper does not have
these drawbacks since, thanks to the lattice embedding, a
coefficient can be modified if and only if all the previously
modified coefficients do not change (see condition R1 in
Section III-A).

Method QF Emb. rate (bpnzAC)
0.1 0.2 0.3 0.4

Proposed 75 0.5000 0.3999 0.2365 0.1732
95 0.4997 0.4583 0.2926 0.1386

[9] 75 0.4579 0.4050 0.2154 0.1340
95 0.4999 0.4574 0.4030 0.3618

[10] 75 0.0451 0.0047 0.0019 0.0025
95 0.0140 0.0082 0.0076 0.0022

TABLE V
DETECTION ERROR WITH CONVERT . THE PROPOSED METHOD WAS

COMBINED WITH THE RANDOM SCANNING STRATEGY.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we introduced a methodology for JPEG
steganography robust against subsequent recompression. Al-
though the JPEG compressor has to be assumed known, it
does not present any obstacles because, in a typical channel, a
social media, we can easily access the compressor. Moreover,
we noticed that the recompression pipeline present in the

professional social network Slack produces the very same
results as the convert compressor, which validates this
assumption.

First, we introduced the notion of the robustness of a DCT
coefficient. We showed that this could be done by dividing the
image into 64 non-overlapping lattices and performing 64 con-
secutive recompressions (associated with ±1 modifications) of
an image, one per lattice. We introduced three ordering of the
lattices: Low to High, High to Low, and Random. We showed
that these three strategies offer different robust sets. Then
we combined the coefficients’ robustness with steganographic
costs from a non-robust stego algorithm in a straightforward
way to robustify the algorithm. Additionally, it was shown how
this could be done in a practical setting with Syndrome-Trellis
Codes.

In the last part of the paper, we evaluate the security of our
method with machine-learning steganalysis. We observe that
the security is affected by everything in the system: Quality
Factor, compressor, and the scanning strategy of the lattices.
We link the differences in security to different sizes of the
robust sets. Moreover, we can observe security loss compared
to the non-robust version of the stego algorithm, which is ex-
pected because many coefficients with small embedding costs
will not be usable for robust embedding. Lastly, unlike any
of the preceding works on robust steganography, our method
is truly errorless, giving us guarantees on the readability of
the embedded secret message. The only exception to this is
mozjpeg which allows rate-distortion optimization. On the
other hand, we have seen that, if successfully embedded,
the rate-distortion optimization increases the security of the
underlying scheme.

In the future, we plan to derive theoretical bounds on the
embedding capacity in the noisy recompression channel. The
source code of the proposed robust embedding is available
from https://janbutora.github.io/downloads/.

ACKNOWLEDGEMENTS

This work was granted access to the HPC (High-
Performance Computing) resources of IDRIS (Institut du
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