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Abstract—A novel steganalysis method for JPEG
images is introduced that is universal in the sense that
it reliably detects any type of steganography as well
as small payloads. It is limited to quality factors 99
and 100. The detection statistic is formed from the
rounding errors in the spatial domain after decom-
pressing the JPEG image. The attack works whenever,
during compression, the discrete cosine transform is
applied to integer-valued signal. Reminiscent of the
well-established JPEG compatibility steganalysis, we
call the new approach the “reverse JPEG compatibility
attack.” While the attack is introduced and analyzed
under simplifying assumptions using reasoning based
on statistical signal detection, the best detection in
practice is obtained with machine learning tools. Ex-
periments on diverse datasets of both grayscale and
color images, five steganographic schemes, and with a
variety of JPEG compressors demonstrate the univer-
sality and applicability of this steganalysis method in
practice.

Index Terms—Steganography, steganalysis, JPEG,
quality factor 100, reverse compatibility, rounding er-
rors, deep learning

I. INTRODUCTION

The term “compatibility attack” is loosely used to de-
scribe a certain type of steganalysis detectors that identify
stego objects by verifying either hard or probabilistic
constraints that must be satisfied by all cover objects from
a certain source. Typically, such attacks are universal in
the sense that they work reliably on most steganographic
methods as well as for very small payloads.

The first example of such an attack was the JPEG com-
patibility steganalysis [10] applicable whenever spatial-
domain steganography is used to embed a secret in a
decompressed JPEG cover image. The stego image will
still bear strong traces of the JPEG compression, allow-
ing an attacker to estimate the quantization matrix of
the JPEG cover image. Since JPEG compression with a
low quality factor is a many-to-one mapping, one could
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either mathematically prove or at least find overwhelming
statistical evidence that a given 8 x 8 block of pixels
with steganographic modifications cannot be obtained
by decompressing any 8 x 8 block of quantized Discrete
Cosine Transform (DCT) coefficients with the estimated
quantization matrix. To make this attack less susceptible
to loss of accuracy due to differences between JPEG com-
pressors in practice, alternative versions of this idea were
proposed by employing feature based machine learning
detectors [24], [28]. Another version of this attack deals
with steganalysis of LSB replacement [2], [3].

A different type of compatibility attack for color images
was described in [16], where the authors show that mere
eight bins in the co-occurrence corresponding to the 'min-
max41lc’ submodel of the Color Rich Model (CRM) [15]
hold all the detection power when the cover images are
developed in ’dcraw’ using AHD and PPG demosaicking
algorithms. These eight bins are “violator bins” that are
nearly empty in cover images (this is the compatibility
constraint) but get populated by steganography allowing
thus construction of extremely accurate detectors.

A powerful compatibility constraint in the co-occurrence
corresponding to the KB residual (SQUARE3x3 sub-
model) in the Spatial Rich Model (SRM) [11] was also
identified in parity-aware version of the SRM in [12] for
steganalysis of LSB replacement for cover sources with
suppressed noise, such as decompressed JPEGs or filtered
images.

The compatibility attack described in this paper only
applies to JPEG images compressed with standard quan-
tization matrices with quality 99 and 100. However, after
reading Section III-E, it should be clear to the reader that
this attack will work for custom quantization matrices that
can loosely be described as being “close” to 99 or 100.
While this may seem as a severe limitation, based on the
study conducted by the creators of the recent ALASKA
steganalysis competition,! 14% of JPEG images with stan-
dard quantization matrices uploaded to Flickr have quality
100 and an additional 4% quality 99. This popularity of
high quality factors may be due to the rapid decrease of
storage prices combined with increased preference of users
to preserve the quality of imagery they share on social
platforms. Steganographers may also intentionally opt for
larger JPEG qualities to increase the embedding capac-
ity since many freely available steganographic programs,
such as Jsteg [35], OutGuess [31], F5 [37], Steghide [19],
Model Based Steganography [33], and JP Hide&Seek only
embed in non-zero DCT coefficients. There also appears
an increased interest within the forensics community in

Thttps://alaska.utt.fr



studying quantization noise during recompression with
high quality factors [26], [29].

After introducing notation, the basics of JPEG com-
pression, and a few preliminaries in the next section, we
explain the main idea behind the reverse JPEG compat-
ibility attack in Section III by analyzing the rounding
errors in the spatial domain after decompressing a JPEG
image. A statistical hypothesis formulation of the detec-
tion problem allows studying the limitations of the attack.
In Section IV, we describe three machine learning built
detectors trained on rounding errors and identify the most
accurate detector, which is further tested in Section V
and Section VI for universality and robustness to various
implementations of JPEG compression, grayscale as well
as color JPEGs, in established datasets, such as the union
of BOSSbase and BOWS2, and a more realistic setting on
the ALASKA dataset. After discussing countermeasures
steganographers could use to improve the security for
quality 100 in Section VII, the paper is summarized in
Section VIII.

II. PRELIMINARIES

Boldface symbols are reserved for matrices and vectors.
The symbol /- is used to denote elementwise product be-
tween vectors / matrices of the same dimensions. Uniform
distribution on the interval [a,b] will be denoted U|a, b]
while N (p1, 02) is used for the Gaussian distribution with
mean p and variance o2. The operation of rounding x to
an integer is the square bracket [z]. The set of all integers
will be denoted Z. The symbol £ is used whenever a new
concept is defined.

A. Folded Gaussian distribution

For X ~ N(u,s) with p € Z, the rounding error X —
[X] ~ v(z;s), —1/2 < 2z < 1/2, where
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approximates v(x; s)

max  |v(x;s) —v(x;s,mo)| <6, (5)
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once ng becomes large enough to satisfy

1

ﬁRmax(no, s) < 4. (6)

B. Basics of JPEG compression

JPEG compression proceeds by dividing the image into
8 x 8 blocks, applying the DCT to each block, dividing
the DCT coefficients by quantization steps, and rounding
to integers. The coefficients are then arranged in a zig-
zag fashion and losslessly compressed to be written as a
bitstream into the JPEG file together with a header. We
first describe this process for a grayscale image.

For better readability, everywhere in this paper, 4, j will
be strictly used to index pixels and k, ! will index DCT co-
efficients. The original uncompressed 8-bit grayscale image
with N; x Ny pixels is denoted x € {0,1,...,255} M1 >Nz,
Constraining x = (z;;) to one specific 8 x 8 block, we will
use indices 0 < 7,5 < 7 to index the pixels in this block.
During JPEG compression, the DCT coefficients before
quantization, dy; € R, are obtained using the formula
dy = DCTy(x) = Zz,j:o fijwij, 0 < k,1 <7, where

]g _ wzwl o8 7rk:(2116+ 1) cos 7rl(2{6+ 1)’ ™
wy = 1/\/5, wr = 1 for 0 < k < 7 are the discrete
cosines. Before applying the DCT, each pixel is adjusted
by subtracting 128 from it during JPEG compression, a
step we omit here since it has no effect on our analysis.

The quantized DCTs are ¢ = [dri/qwi), ¢ €
{—1024,...,1023}, where qx; are quantization steps in a
luminance quantization matrix, which is supplied in the
header of the JPEG file.

During decompression, the above steps are reversed. For
a block of quantized DCT coefficients c;, the correspond-
ing block of non-rounded pixel values after decompression
is y;; = DCT;'(c-q) £ Zl,l:o faaricr, vi; € R. To
obtain the final decompressed image, y;; are rounded to
integers and clipped to a finite dynamic range [0, 255].

For color images, the RGB representation is typi-
cally changed to YC,Cp, (luminance, and two chromi-
nance signals), the luminance Y is processed as above,
while the chrominance signals are optionally subsampled,
then transformed using DCT, and finally quantized with
chrominance quantization matrices, also stored in the
header of the JPEG file. For more detailed description of
the JPEG format, the reader is referred to [30].



III. ANALYSIS

The key idea behind the attack and the first item
studied in this section is the statistical distribution of the
rounding errors in the spatial domain when decompressing
a cover JPEG image. Then, a steganalysis method is
developed by testing for this known distribution.

A. Cover images

We express the decompressed block of non-rounded pix-
els y;; in terms of the original uncompressed block z;; and
the rounding errors in the DCT domain, uy; = dr1/qri—cri:

Yij = DCTi_jl(c -q)
-1 -1
= DCTy; (d) — DCT;; (u-q)

=T — DCTi_j1 (u-q) (8)
where .
DCTi_jl(u q) = Z Fi qru.- (9)
k,1=0

Assumption A1l: For further analysis, we make the
following assumption regarding the rounding errors of
cover images in the DCT domain:

W ~ U-1/2,1/2)

u; mutually independent.

(10)
(11)

for all k,1.
From the independence of ug; and the fact that Elug] =
0, Varlug] = 1/12 for all k,I, Lindeberg’s extension

of the Central Limit Theorem (CLT) implies that y;;
approximately follows the Gaussian distribution

Yij ~ N (i, 545), (12)
with variance
1 < g
Sij = 12 Z( 11%)2(11%1- (13)
k,1=0

Because x;; is an integer, from Eq. (8) the rounding
error in the spatial domain, e;; = y;; — [yi;], follows the
Gaussian distribution N(0, s;;) “folded” to [—1/2,1/2),
which we denoted in Section II as e;; ~ v(x; s;5).

B. Stego images

We model the impact of JPEG-domain steganography
as adding a random variable 7 with range {—1,0,1} to
the quantized DCT coeflicients cg; — cp; + Mg Assuming
Pr{1} = Pr{-1} = B, values By are the so-called
change rates (the selection channel) determined by the
stego scheme. Thus, the decompressed non-rounded stego
image z;; is

zi; =DCT; ((c+n) - q)
= DCT;jl(d) + DCTfjl((n —u)-q)
=25 — DCT;jl(u -q) + DCT;jl(n -q). (14)

Assumption A2. The embedding changes 7y, are in-
dependent of the rounding errors uy; and also mutually

independent. This is a reasonable assumption for steganog-
raphy that does not use the rounding errors as side-
information for embedding.

Employing the CLT again,

zij ~ N (i, 8i5 + 14j), (15)
7
rig = Y ()2 aVar(n). (16)
k,l=0

Thus, the rounding error of the decompressed stego
image, e;; = zij — (2] ~ v(w;s];) with a larger variance
SIL] = 845 + Tij-

For example, for J-UNIWARD [22] and UED [17], [18],
Var[nu] = By + By where B,:rl ~ are the change rates
for changes +1 from the embedding simulator or the
Syndrome-Trellis Code (STC) [9].

For nsF5 [13] with change rate 8 = /8 applied to non-
zero AC DCTs, Var[ng] = S whenever (k,1) # (0,0) and

ckr # 0.

C. Hypothesis test

The analysis carried out in the previous two subsections
allows us to formulate a statistical hypothesis test for
detection of steganography using rounding errors. Given
a JPEG block decompressed to the spatial domain but
not rounded, z;;, the steganalyst is facing the following
hypothesis test for all 0 < 1,5 < 7:

Hy :e;5 ~ v(z; s45) (17)

H; €45 ~ V(ZL'; Sij +7’ij), Tij > 0. (18)

This test is composite if r;; is not known, which would
be the case when detecting potentially multiple stegano-
graphic methods and / or unknown payload size. On the
other hand, for detecting a known steganography and a
known payload size, the selection channel is approximately
available — the change rates fx; can be computed from
the analyzed stego image — which means that r;; can also
be approximately computed. Finally, notice that the pair
(i,7) is called the “JPEG phase” [6], [20], [21], [34].

Assuming r;; is known and 7;; < s;5, the leading term
in the log-likelihood ratio test for the simple hypothesis
test (17) for a single pixel ¢, j with rounding error e;; is
an energy detector:

vieij;siy +1ij) . T Tij o

Hei) =log veisg) | 2sy | 25,0

Next, we focus on JPEG quality 100 and then consider
generalizations to lower quality factors.

(19)

D. Quality factor 100

For quality factor 100, qx; = 1 for all k,l. Since
Z;,zzo( ,5;’”)2 = 1 due to the orthonormality of the
DCT, DCT,;' (u - q) ~ N(0,1/12) for all pixels 4,7, and
Yij — i) ~v(2:1/12), © € [-1/2,1/2) -

(20)



Figure 1. Distribution v(z;s) for s = 1/12,0.1,0.15,0.2. Note how
rapidly v(z;s) converges to a uniform distribution with increased s
(also c.f. Tables I-1I).

shown in Figure 1. The infinite sum is well approximated?
with only three terms, n € {—1,0,1}:

v(x;1/12) = 4/ §67612 (1+e % +e7127))
m
=/ 967612 (14 2e %cosh(12z)).  (21)
m

To demonstrate the performance of the energy detec-
tor (19) for this quality factor, we report the results on
BOSSbase 1.01 [1] consisting of 10,000 grayscale 512 x 512
images compressed with Matlab’s imwrite and embedded
with the nsF5 algorithm [13] at 0.2 bpnzac (bits per
non-zero AC DCT coefficient). Figure 2 left shows the
distribution of the standard deviation of rounding errors
in the spatial domain across all 10,000 cover and stego
images while the right graph shows the ROC curve based
on this test statistic. The thin right tail of the test statistic
across covers gives the detector power close to 0.9 at zero
false alarm. The thick left tail is due to the failure of
natural images to satisfy Assumptions A1-A2. While we
observed v(x;1/12) to be a great fit to the distribution
of rounding errors for most cover images, our modeling
assumptions break, e.g., for images with saturated regions.
Additionally, for some images the rounding error for some
DCT modes fails to be uniform.

E. General quality factors

First, notice that for quality less than 100, the distribu-
tion of the inverse DCT of the rounding errors ug; depends
on the location 7,5 of the pixel in the block, its JPEG
phase. Since the coefficients (7) in the DCT satisfy

g _y Ty i
|f£§|=\sz” :|f111 ]|:|fkl2 7], (22)
the variance s;; (13) inherits the same symmetries
|sij| = |s7—i 5] = |siz—s] = [s7—i7—5]- (23)

2With an error less than 6 = 2.74 x 10~% on the domain of v
(from (5)).

Table 1
MINIMUM AND MAXIMUM OF v(z,s) ON [—1/2,1/2) AS A FUNCTION
OF VARIANCE s.

s min v max v
0.083 0.617 1.139
0.10 0.723 1.279
0.15 0.896 1.104
0.20 0.961 1.0386
0.24 0.9825 1.0175
0.30 0.9946  1.0054

Table II

MINIMUM AND MAXIMUM VARIANCES s;; OVER JPEG PHASES 1, j
FOR DECREASING QUALITY FACTORS.

QF mini]- Sig maXjj Sgj
100 0.083 0.083
99 0.105 0.204
98 0.2400 0.822
97 0.492 1.800
96 0.877 3.216

Thus, technically the test needs to be applied sepa-
rately across 16 four-tuples of JPEG phases. However,
with decreasing quality factor, the quantization steps g,
increase and thus the variance s;; increases as well. With
increased s;;, the folded Gaussian distribution v(z;s;;)
rapidly approaches U[—1/2,1/2) (see Figure 1), which
is why this steganalysis method ceases to be effective.
Table I shows the minimum and maximum values of
v(x;s) on its domain [—1/2,1/2) computed for a range
of variances s. Additionally, in Table II we display the
minimum and maximum variance s;; across JPEG phases
(i,4) for decreasing quality factors.

The attack using rounding errors should still be gener-
ally effective for quality 99 because v(z;s) is still rather
far from a uniform distribution (c.f., Table I-II and
Figure 1). For quality less than 99, however, v(z;s) is
so close to a uniform distribution that the attack does
not work. For quality 98, this attack might still work
but only when considering the rounding errors at phases
(4,7) € {(0,0),(0,7),(7,0),(7,7)} for which the variance
85 ~ 0.24.% This, however, decreases the size of available
samples for the test by a factor of 16.

IV. MACHINE LEARNING BASED DETECTORS

Due to the complexity of natural images, Assumptions
A1-A2 are satified to a varying degree, which limits the
accuracy that can be achieved with detectors derived from
idealized models. This motivated the authors to study
machine-learning based detectors trained on the rounding
errors in the spatial domain, e;; = z;; — [2;;], where z;;
is the decompressed but not rounded (or clipped) JPEG
image. Computing the rounding errors can also be viewed
as a way to suppress content and form a “noise residual.”

This section describes the datasets and detectors that
will be used in Section V containing the results and
interpretations of all experiments.

3For all other phases, s;; > 0.37, which essentially prevents the
attack for typical image sizes (see Table I).
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Figure 2. Left: Distribution of standard deviation of rounding errors for cover QF 100 images (black) and stego images (gray) embedded at
0.2 bpnzac with nsF5. Right: The corresponding ROC curve. Dataset: 10,000 BOSSbase grayscale 512 x 512 images.

A. Dataset

Two datasets were used for our experiments. The first
is the union of BOSSbase 1.01 and BOWS2, each with
10,000 grayscale images resized to 256 x 256 pixels with
imresize in Matlab with default parameters. This dataset
is a popular choice for designing detectors with deep learn-
ing because small images are more suitable for training
deep architectures [4], [38], [40]-[42], [44]. The second
dataset was prepared from RAW images made available
to ALASKA competitors and is detailed in Section VI-A.

B. Detectors

Three types of detectors were implemented: the SR-
Net [4], a deep convolutional neural network recently pro-
posed for steganalysis in both spatial and JPEG domain,
the Gabor Filter Residual features (GFR) [34] with the
FLD-ensemble [25] as the classifier, and a feature set
consisting of histograms of absolute values of rounding
errors split by JPEG phase and symmetrized, also coupled
with the ensemble classifier. Since all these detectors were
trained on rounding errors e;;, we abbreviate them as e-
SRNet, e-GFR, and e-Hist. Next, we describe the details
of each classifier and its training.

1) SRNet: For experiments on the union of BOSSbase
and BOWS2, all 10,000 BOWS2 images were included in
the training set, together with 4,000 randomly selected
images from BOSSbase. The validation and testing set,
each with 1,000 and 5,000 images were randomly selected
from the remaining images from BOSSbase. The training
was done for a total 25k iterations with batches of size 64
with an initial LR 2 x 10~2 that was dropped to 2 x 10~
after bk iterations.

2) GFR and histograms: The GFR features were ex-
tracted from the rounding errors in the spatial domain.
This feature set was included as a representative of the
class of JPEG phase-aware features, which are among the
most powerful rich models for JPEG steganalysis.

Inspired by the analysis from Section III, we devel-
oped a third feature representation consisting of quan-
tized histograms of absolute values of rounding errors
split by JPEG phase but merged (symmetrized) across
phases with the same variance (23). Formally, denoting

the rounding errors in a decompressed 8 x 8 block of pixels
eij = zij — %), with 0 <4, j < 7 being the JPEG phase,

= |{(&",5") € Pijlmq < lewj/| < (m+1)q}|, (24)

where ¢ = 1/K is a quantization bin width with K a
positive integer, 0 < m < K/2 the index of the histogram
bin, and P;; the set of all pixels in a N; x Ny image with
phase (i,j): (i',7') € Pyj if and only if 0 < i < Ny, 0 <
j' < N3 and mod(i’ — i,8) = mod(j’ — j,8) = 0. All 64
K-dimensional histograms (24) are finally symmetrized to
16 histograms Bﬁ,‘ﬂ ) based on the symmetry of variances
of rounding errors (23):

h{D) = plod) 4 p(T=00) 4 p@T=0) 4 p(T=07=3) = (95)

for 0 <14,j < 4.

The detectors for both the GFR features and the sym-
metrized phase-split histograms were trained on all images
not used for testing of the SRNet as described above, i.e.,
the training set consisted of 15,000 images for the union
of BOSSbase and BOWS2. Finally, we note that K = 10
was used for the histograms.

V. EXPERIMENTS

All experiments in this section were executed on the
union of BOSSbase and BOWS2 datasets. We first show
that the SRNet trained on rounding errors provides better
detection than GFR or histograms on rounding errors.
Further detection boost is obtained when training the SR-
Net on two channels — rounding errors and decompressed
images, especially for QF 99. We also study the univer-
sality of the attack by showing that a detector trained on
one embedding scheme can detect other, previously unseen
schemes rather well as long as the SRNet is trained only
on rounding errors. Finally, we investigate the robustness
of this attack w.r.t. different JPEG compressors. Training
on the compressor from Python’s PIL generalizes overall
the best.

A. Identifying the best detector

First, we studied the performance of the three machine
learning detectors trained on rounding errors for quality 99



Table ITI
DETECTION ACCURACY OF THREE DETECTORS TRAINED ON ROUNDING ERRORS AND A CONVENTIONAL SRNET TRAINED ON DECOMPRESSED
JPEGS FOrR J-UNIWARD AND A RANGE OF PAYLOADS. BOSSBASE + BOWS2 DATASET.

QF 99 QF 100
bpnzac | e-SRNet e-GFR e-Hist SRNet | e-SRNet e-GFR e-Hist SRNet
0.4 0.9980 0.9840 0.9376  0.8592 0.9998 0.9991 0.9933 0.8829
0.3 0.9960 0.9698 0.9035 0.8054 0.9998 0.9988  0.9865 0.8331
0.2 0.9832 0.9264 0.8376 0.7257 0.9998 0.9967 0.9702 0.7548
0.1 0.9316 0.8284 0.7218 0.6015 0.9998 0.9860 0.9212  0.6488
0.05 0.7989 0.6983  0.6239  0.5437 0.9946 0.9327 0.8486  0.5682

and 100 for J-UNIWARD and payloads 0.05-0.4 bpnzac.
For comparison, in Table III we also included the results
of the conventional SRNet trained on decompressed JPEG
images without rounding, which is the established way
of training a detector for JPEG images. For quality 100
and payloads 0.2-0.4 bpnzac, the e-SRNet is only slightly
better than e-GFR (this is also due to the accuracy being
very close to 1). With decreasing payload, however, e-
SRNet offers better accuracy than e-GFR by up to 6% for
the smallest tested payload. The phase-split histograms
(e-Hist) start lagging behind e-SRNet as well as e-GFR
increasingly more as the payload size decreases, with the
largest loss of 14.6% w.r.t. the e-SRNet for the smallest
payload 0.05 bpnzac. Note that the conventional SRNet
is markedly less accurate across all payloads with the loss
w.r.t. e-SRNet ranging from 11% for the largest payload
to 43% for the smallest payload.

For quality 99, the e-SRNet is less accurate than for
quality 100 especially for smaller payloads but still detects
payload 0.4 bpnzac with 99.80% accuracy. The difference
between e-SRNet and e-GFR is much larger than for
quality 100. Similar to the quality 100, the phase-split his-
tograms e-Hist and the conventional SRNet are markedly
worse.

For quality 98, all three detectors trained on rounding
errors were essentially randomly guessing with the excep-
tion of the three largest payloads 0.2-0.4 bpnzac where
the e-SRNet achieved accuracy 0.53-0.57, respectively, at
which point the conventional SRNet becomes much more
accurate. This rapid loss of detection power is to be
expected based on the analysis from Section III.

Next, we studied whether the performance of e-SRNet
can further be improved by including the decompressed
(non-rounded and non-clipped) JPEG image as a second
channel (eY-SRNet). Having to train twice as many pa-
rameters in the first layer, the eY-SRNet did not converge
from scratch for smaller payloads. This was addressed by
curriculum learning via payload by first training on the
largest payload with batch size 64 for 50k iterations with
LR 2 x 1073, which was dropped to 2 x 10~* for 25k more
iterations. This detector is then used as a seed for training
detectors for smaller payloads with the larger LR for 25k
iterations, followed by 25k iterations with the smaller LR.

Table IV shows a clear benefit of using the second
channel for QF 99 (eY-SRNet), especially for smaller
payloads. For QF 100, the comparison is not as clear
because the detection accuracy of both e-SRNet and eY-

SRNet is close to 100%.

B. Universality

Based on the analysis in Section I, we expect the power
of the proposed reverse compatibility attack to depend
mostly on the payload size and less on the specifics of the
steganographic algorithm. In this section, we evaluate the
ability of e-SRNet and eY-SRNet to detect steganographic
algorithms on which it was not trained on.

Three embedding algorithms were intentionally se-
lected with vastly different embedding operations: nsF5,
J-UNIWARD, and Jsteg modified to pseudo-randomly
spread non-coded message bits across all DCT coefficients
not equal to 0 or 1. First, a detector was trained on a small
payload embedded with one of the three stego schemes
and then tested on the other two. The payload for each
embedding method was empirically selected so that all
three embedding schemes exhibit approximately the same
detectability, which is not too close to 100% or a random
guesser. In particular, the detector for Jsteg was trained
on payload 0.01 bpnzac, nsF5 on 0.045 bpnzac, and J-
UNIWARD on 0.05 bpnzac. The results are summarized
in Figure 3 showing the missed-detection probability when
training on Jsteg (top), nsF5 (middle), and J-UNIWARD
(bottom) and testing on stego images embedded with a
range of payloads.

For QF 100 (right), the two-channel eY-SRNet per-
formed overall better than e-SRNet. All three detectors
generalize to unseen embedding very well with the detec-
tor trained on J-UNIWARD being the best. For QF 99
(left), however, e-SRNet generalizes far better than the
two channel eY-SRNet, indicating perhaps that it over-
specializes on the trained algorithm. Similar to QF 100,
the detector trained on J-UNIWARD generalizes the best
and also has the smallest false-alarm rate.

C. Robustness to JPEG compressors

Since there exist many variants of JPEG compressors,
which differ mainly in the implementation of the DCT
and the internal number representation, the same JPEG
image may decompress slightly differently depending on
the exact implementation of the DCT, and the same un-
compressed image may be compressed to different JPEG
files. Such differences may negativelly affect the accuracy
of a detector that requires a training set, especially one
trained on rounding errors. In this section, we investigate



Table IV
DETECTION ACCURACY OF THREE DIFFERENT VERSIONS OF SRNET WHEN TRAINING ON DECOMPRESSED IMAGES (SRNET), ROUNDING ERRORS
(e-SRNET), AND BOTH (eY-SRNET). DATASET: BOSSBASE + BOWS2.

QF 99 QF 100
Payload SRNet e-SRNet eY-SRNet SRNet e-SRNet eY-SRNet
0.4 0.8592 0.9980 0.9994 0.8829 0.9998 0.9995
0.3 0.8054 0.9960 0.9990 0.8331 0.9998 0.9998
0.2 0.7257 0.9832 0.9981 0.7548 0.9998 0.9993
0.1 0.6015 0.9316 0.9780 0.6488 0.9998 0.9984
0.05 0.5437 0.7989 0.9287 0.5682 0.9946 0.9992
Table V color JPEG images of variable size, a diverse cover source

TESTING ACCURACY OF e-SRNET TRAINED AND TESTED ON JPEGS
FOR ALL COMBINATIONS OF FIVE JPEG COMPRESSORS FOR QUALITY
100, J-UNIWARD 0.05 BPNzAC, BOSSBASE + BOWS2. THE LAST
ROW SHOWS THE PERFORMANCE OF eY-SRNET WHEN TRAINING ON

PIL JPEGs.
e-SRNet Tested on images
Trained Matlab  Convert Int Float PIL
Matlab .9946 .9786 19953 .9754 .9949
Convert .8104 .9962 .8103 .9963 .8102
Int .9964 .9823 19960 .9790 19963
Float 7568 .9970 7567 .9967 7567
PIL .9959 .9889 .9966 .9879 .9959
eY-SRNet
PIL .9974 9877 9974 .9874 19976

this issue by purposely training on JPEG images obtained
with one compressor and testing on images generated by
another compressor. We do so for the embedding algorithm
J-UNIWARD at quality 100 and payload 0.05 bpnzac.

The following compressors were included in our test:
Matlab’s imwrite, Python3 library PIL (PIL), ImageMag-
ick’s Convert (Convert), Int and Float DCT compressors
in libjpeg (version 6b).* Fast DCT compression in lib-
jpeg has not been included in our test because it is not
recommended for quality factors larger than 97 since the
compression is then slower and more lossy than on smaller
quality factors.®

Table V shows the complete confusion matrix for quality
factor 100 for e-SRNet. While a loss can indeed be ob-
served especially in the case when the detector was built
with images generated by 'Float DCT’ and 'Convert’, the
detector trained on images from Python’s PIL (boldface in
the table) generalized overall very well when evaluated on
images from all five compressors. With PIL generalizing
the best, we also include the results for the two-channel
eY-SRNet trained on images compressed by PIL to verify
that adding the decompressed image as a second channel
does not negatively affect robustness to different JPEG
COMpressors.

VI. EXPERIMENTS ON ALASKA

To see how the reverse JPEG compatibility attack
performs in more realistic conditions, we include extensive
experiments on the ALASKA dataset, which contains

4http://libjpeg.sourceforge.net/
5Taken from libjpeg documentation https://manpages.ubuntu.
com/manpages/artful/manl/cjpeg.1.html.

with a wide spectrum of processing, four different types of
stego algorithms, and variable payload size.

A. Dataset

We started with 49,928 images acquired in the RAW
format provided as part of the steganalysis competition
ALASKA. Available from the same web site is the script
for converting RAW images to JPEGs and for embedding
JPEG covers with secret messages. The conversion script
develops a RAW image using four different settings and
applies varying amounts of sharpening, denoising, resizing,
cropping, and micro-contrast enhancement. The final size
of the cover image is N; X Ny pixels, where N1, Ny €
{512,640, 720,1024}, obtained via “smart” crop that tries
to preserve the histogram of local pixel variances (see [14]
detailing the smart crop).

The embedding script selects four steganographic meth-
ods: J-UNIWARD [22], UED [17], nsF5 [13], and EBS [36]
without side information, with priors 0.40, 0.30, 0.15,
and 0.15, respectively. The payload size is determined
by the processing chain applied by the conversion script
when converting the RAW image to JPEG to obtain
an approximately constant statistical detectability across
various processing chains and JPEG quality factors. For
example, the payload is adjusted by considering the image
size based on the square root law [23]. All four embedding
methods were adjusted to embed in luminance and both
chrominance channels as described in [7]. The reader is
referred to the above-cited ALASKA web site for more
information about both scripts.

B. Training

Most deep learning architectures proposed for steganal-
ysis [27], [32], [39]-[42], [44] cannot be trained on large
images because of the memory limitations of current GPUs
(11 or 12 GB). For a sufficiently large minibatch size,
the images are usually limited to 256 x 256 or 512 x 512
pixels. To train a version of the SRNet that can handle
images of arbitrary size, such as those from the ALASKA
dataset, we adopted a similar approach as in [14] in
which first a “tile detector” is trained® as a cover-vs-
all-stego classifier on 256 x 256 tiles and then only its
Inner Product (IP) classifier layer is retrained on images

6The batches were formed with the same priors as in the ALASKA
dataset (Section VI-A).



of arbitrary size. Since the input to the IP layer in SRNet
are global means of 512 feature maps outputted by the
last convolutional layer, the IP layer is always presented
with a 512-dimensional “feature vector” independently of
the image size.

The database of RAW images was split into two disjoint
parts 7 and Z, with T consisting of 39,188 images and 7
with 10,740 images. The images from T were developed
with the conversion script modified to output 256 x 256
smart crops and were used to train the tile detector. The
images from 7 were processed with the conversion script
to arbitrary size and were used for retraining the IP layer
on arbitrary sized images. A small portion of Z was also
used for validating the tile detector as explained next.

While validating the tile detector on 256 x 256 tiles
was giving us 100% accuracy most of the time, we did
observe different performance for different checkpoints
after retraining the IP layer on arbitrary size. Thus, we
validated the tile detector on arbitrary sized images from
7 as this gave more meaningful feedback to select the best
checkpoint. This type of validation had to be carried out
on batches consisting of one cover-stego pair because in
TensorFlow framework, it is not possible to put images of
different sizes in one batch.

All images in 7 were used for training the tile detector.
The breakup of Z into TRN / VAL / TST and VAL for
the tile detector was 3,656 / 1,500 / 4,000, and 1,584.

The tile detector training was carried out for a total 30k
iterations with mini batch size 64, starting with Learning
Rate (LR) 2 x 1073, which was dropped to 2 x 10~%
after 10k iterations. The IP layer was retrained for 20k
iterations with LR 1073 and batch size 800. The setting
for this layer was kept the same as for the IP layer at the
end of the tile detector.

C. Searching for the best detector

Since the images in ALASKA are color, our first test was
aimed at investigating whether the chrominance channels
help improve detection accuracy of e-SRNet trained on
rounding errors. In particular, we tested a three-channel
variant of the e-SRNet in which all 64 3 x 3 filters in the
first layer were replaced with 64 3 x 3 x 3 filters applied to
rounding errors of the luminance and both chrominance
signals. As Table VI shows, however, the three-chanel e-
SRNet gave essentially the same results as using only
the luminance. This is surprising since the conventional
SRNet on quality factors other than 99 and 100 greatly
benefited from including the chrominance channels [43].
We hypothesize that this is due to two reasons. First, for
QFs near 100 in the ALASKA dataset, the chrominance
channel carries only one half of the total payload as the
luminance and thus affects the distribution of the folded
Gaussian to a lesser degree. Second, since the chromi-
nance has a narrower dynamic range than luminance, the
rounding error in the DCT domain is not uniform, further
violating Assumption Al (Section III-A) under which
the reverse JPEG compatibility attack was derived. All

remaining experiments on ALASKA were thus executed
with luminance only.

The focus of the next round of exploration was to deter-
mine whether the following design choices might perhaps
further improve the detector performance:

1) Supplying the non-rounded image as a second chan-
nel (eY-SRNet)

2) Training the tile detector as multi-class instead of
cover-vs.-all-stego

3) Using four moments of feature maps outputted by
the tile detector to better handle images of arbitrary
size

4) Using MLP instead of IP layer for the arbitrary size
detector.

As observed in the previous section, while the two-channel
eY-SRNet performed better than e-SRNet, it was also less
robust w.r.t. a stego-source mismatch, i.e., when testing
on an unseen embedding algorithm. Since the ALASKA
dataset contains stego images from four different embed-
ding schemes, it can be expected that the more robust e-
SRNet will give better results than eY-SRNet. This was,
indeed, confirmed experimentally as shown in Table VII.
This table shows the probability of correct detection of
three different versions of SRNet achieved on the ALASKA
dataset with stego images following their corresponding
priors, on covers (this is essentially 1 — Pga ), and then on
each embedding algorithm. Note that the lowest detection
accuracy is for nsF5, which is due to the payload scaling
applied in ALASKA (nsF5 stego images have the smallest
payload).

To address the second item above, we recall the re-
sults reported in [5] on steganalysis of diversified stego
sources. The authors investigated several methodologies
for building a detector for stego source containing images
from seven different steganographic schemes in the spatial
domain. In particular, training the SRNet as multi-class
(but using as binary to distinguish stego images from
covers) gave better results than training it as cover-vs.-
all-stego. Training the e-SRNet as multi-class, including
retraining the IP layer as multi-class, however, did not
translate to a gain. In fact, as Table VII shows, the correct
detection was lower on ALASKA and on covers with
statistically insignificant improvements for J-UNIWARD
and UED.

Finally, we only comment on the effect of items 3 and 4
above. Outputting the minimum, maximum, and variance
of the feature maps on the tile detector’s output, in addi-
tion to the global mean, did not lead to any improvement
in detection performance. Neither did we observe any gains
when replacing the IP layer with a MLP with one hidden
layer of double the dimensionality of the output of the tile
detector. In summary, the best overall detector for QFs 99
and 100 on the ALASKA dataset was the e-SRNet trained
on rounding errors of luminance only with only the global
means as output of the tile detector and a simple IP layer
retrained on arbitrary sizes. The tile detector as well as
the IP (for arbitrary size) were trained as one-vs.-all-stego



Table VI
DETECTION ACCURACY OF e-SRNET ON ALASKA TEST SET WHEN
USING ONLY THE ROUNDING ERRORS FROM LUMINANCE AND A
THREE-CHANNEL e-SRNET WHEN USING THE ROUNDING ERRORS
FROM ALL THREE CHANNELS.

QF 99 100
Luminance 0.9400  0.9900
Color 0.9375  0.9893

classifiers on minibatches formed by respecting the priors
for the four stego schemes.

VII. COUNTERMEASURES

Fundamentally, the proposed reverse JPEG compatibil-
ity attack is possible because the signals entering the DCT
in the JPEG compressor are integer-valued. Therefore,
a countermeasure against this attack would be to not
round the luminance (and chrominances for color) before
applying the DCT.

To test this hypothesis, uncompressed (16-bit TIFF)
color 256 x 256 smart crops obtained using the developing
script from ALASKA were converted to monochrome im-
ages using the relationship Y = 0.299 x R + 0.589 x G +
0.114 x B, where R, G, B stand for red, green, and blue
channel, respectively, and then scaled to the 8-bit range
[0, 255] without rounding. Each image was then processed
using block DCT (implemented with dct2 in Matlab).
The resulting DCT coefficients were then quantized with
quality 100, rounded, and finally written to a JPEG file
using the JPEG Toolbox. These cover JPEGs were then
embedded with J-UNIWARD at 0.2 bpnzac. With the
same breakup of ALASKA into training, validation, and
testing, the e-SRNet achieved the testing accuracy of
55.05, which confirms the effectiveness of this countermea-
sure.

This countermeasure, however, has a flaw since, to the
best knowledge of the authors, all JPEG compressors
round the luminance before applying the DCT. Thus,
images compressed from non-rounded luminance are rare
and should be suspicious by themselves. In other words,
the proposed countermeasure only works within an artifi-
cially crafted cover source. In fact, since rounding errors of
integer-valued compressed images follow the folded Gaus-
sian distribution (see Figure 1) and the rounding errors
of non-integer compressed images do not, both sources
can be reliably distinguished: for quality 100, the SRNet
tile detector trained on rounding errors of only luminance
achieved 100% accuracy. Training was done with mini
batch size 64 for 30k iterations, with initial LR 1073
dropped to 10~* after 10k iterations. The best checkpoint
was selected after 4k iterations.

A more viable alternative is to break the independence
of the rounding error uy; and the embedding change ny;
(Assumption A2 in Section III-B) and ensure that the
variance of ug; +ny; stays as close to 1/12 as possible. This
is exactly what the so-called side-informed embedding
schemes [8], [18] achieve heuristically by modulating the

costs of changing each DCT coefficient by 1 — 2|ug].
Therefore, as the next step, we switched to the BOSS-
base + BOWS2 dataset and tested the security of SI-
UNIWARD [22] on a range of payloads for both quality
factors 99 and 100 when steganalyzed with e-SRNet, eY-
SRNet, and a conventional SRNet. In this case, the two-
channel eY-SRNet gave overall best performance for QF
99 and QF 100 (see Table VIII for the complete results).
Comparing the high detectability of J-UNIWARD (Ta-
ble IV), we conclude that SI-UNIWARD is an effective
counter measure for the reverse JPEG compatibility attack
as long as the payload size is kept below 0.05 bpnzac.

VIII. CONCLUSIONS

A new compatibility steganalysis attack is proposed,
which is applicable to both color and grayscale JPEG
images saved with quality 99 and 100. It is based on the
observation that, when decompressing a JPEG image, the
rounding errors in the spatial domain exhibit a Gaussian
distribution with variance 1/12 folded to [—1/2,1/2).
Steganographic embedding changes made to quantized
DCT coefficients increase the variance of the Gaussian dis-
tribution, allowing thus an extremely accurate detection.
The attack is fundamentally possible due to the fact that
the DCT is applied to integers.

While the basic principle of the attack is explained and
introduced under simplifying modeling assumptions using
statistical hypothesis testing, the best detectors in practice
are obtained with classifiers trained on rounding errors.
Three types of classifiers were investigated — Gabor Filter
Residuals, phase-split histograms of rounding errors, and a
deep residual network called the SRNet, which consistently
provided the best results in our experiments.

The attack has been tested on five different embedding
schemes, grayscale and color images, and diverse stego
sources (the ALASKA dataset). It appears to be universal
in the sense that a detector trained on one embedding
algorithm generalizes to unseen embedding methods. The
attack is also robust to various JPEG compressors. More-
over, it has been shown that steganalysis targeted to a
specific embedding algorithm can be improved, especially
for quality factor 99, by providing rounding errors together
with decompressed image as input to the network detector.

To circumvent the attack, one needs to avoid applying
the DCT to integer-valued images, which, however, none
of the JPEG compressors known to the authors do. The
second possibility to reduce the detectability is to use side-
informed embedding schemes that minimize the combined
distortion due to quantization and embedding. They, in-
deed, are less detectable than non-side-informed schemes.
Our experiments showed that SI-UNIWARD on payload
of 0.05 bpnzac essentially eluded detection. Thus, besides
drastically reducing the payload, it currently appears that
quality 100 and 99 JPEGs should be avoided for steganog-
raphy by the same token as decompressed JPEGs should
not be used for spatial-domain embedding.

All code used to produce the results in this paper, in-
cluding the network configuration files will be made avail-



Table VII
PROBABILITY OF CORRECT DETECTION OF e-SRNET, eY-SRNET, AND MULTI-CLASS e-SRNET (ALL ON LUMINANCE ONLY) ON ALASKA,
COVERS (1 — Pga), AND EACH EMBEDDING ALGORITHM. RESULTS OBTAINED ON 5 X 4,000 IMAGES FROM THE TEST SET.

10

e-SRNet eY-SRNet Multi-class e-SRNet

QF 99 QF 100 QF99 QF100 QF 99 QF 100

ALASKA 0.9400 0.9900 0.9296 0.9450  0.9098 0.9794
Cover 0.9960 0.9985 0.9960 0.9915 0.9810 0.9993
EBS 0.9550 0.9873  0.9563 0.9788  0.9423 0.9810
JUNI 0.9945 0.9888  0.9690 0.9860  1.0000 0.9985
nsF5 0.2880 0.9508 0.2598 0.3865 0.0395 0.7945
UED 0.9825 0.9875  0.9635 0.9820 0.9910 0.9885

Table VIII

ACCURACY OF THE CONVENTIONAL SRNET TRAINED ON DECOMPRESSED IMAGES (SRNET), e-SRNET ON ROUNDING ERRORS, AND A

TWO-CHANNEL €Y-SRNET TRAINED ON DECOMPRESSED IMAGES AND ROUNDING ERRORS ACROSS DIFFERENT PAYLOADS OF SI-UNIWARD.
DATASET: BOSSBASE + BOWS2.

99 100
bpnzac SRNet e-SRNet eY-SRNet SRNet e-SRNet eY-SRNet
0.4 0.6859 0.9517 0.9960 0.6960 0.9954 0.9941
0.3 0.6106 0.9391 0.9824 0.6186 0.9925 0.9923
0.2 0.5457 0.8354 0.9208 0.5474 0.9758 0.9915
0.1 0.5030 0.6278 0.6862 0.5474 0.8514 0.8978
0.05 0.5000 0.5110 0.5344 0.5291 0.6107 0.6800

able from http://dde.binghamton.edu/download/ upon
acceptance of this paper.
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Figure 3. Probability of missed detection Pyip (in logarithmic scale) on stego images embedded with three different stego schemes and
payloads when training e-SRNet (color) and eY-SRNet (patterns) for Jsteg (top), nsF5 (middle), and J-UNIWARD (bottom) on payloads
0.01, 0.045, and 0.05 bpnzac, respectively. The first two columns denoted by Ppa and Pyp correspond to the false-alarm and missed-detection
rates of each detector. The value 10~ is used to represent Pyp = 0 as this value was never achieved in terms of missed detection. Testing
payloads were chosen to be roughly 2, 4 and 6 times of the payload used in training. Left: QF 99, right: QF 100. Dataset: BOSSbase +

BOWS2.



