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Figure 1: Toy example using blocks of size (1, 2) for visualization purposes. Blue dots are all the compatible DCT blocks ob-
tained by compressing pairs of values between 0 and 32. The orange stars are the DCT blocks without any antecedent in the
pixel domain, thus incompatible and stego. The distribution of the spatial rounding errors (left plot) can be used to detect
incompatible blocks, however for larger block sizes, regions of incompatible errors are more complex.

ABSTRACT
This paper introduces a novel compatibility attack to detect a
steganographic message embedded in the DCT domain of a JPEG
image at high-quality factors (close to 100). Because the JPEG com-
pression is not a surjective function, i.e. not every DCT blocks can
be mapped from a pixel block, embedding a message in the DCT
domain can create incompatible blocks. We propose a method to
find such a block, which directly proves that a block has been modi-
fied during the embedding. This theoretical method provides many
advantages such as being completely independent to Cover Source
Mismatch, having good detection power, and perfect reliability
since false alarms are impossible as soon as incompatible blocks
are found. We show that finding an incompatible block is equiva-
lent to proving the infeasibility of an Integer Linear Programming
problem. However, solving such a problem requires considerable
computational power and has not been reached for 8x8 blocks. In-
stead, a timing attack approach is presented to perform steganalysis
without potentially any false alarms for large computing power.
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• Security and privacy→ Cryptanalysis and other attacks.
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1 INTRODUCTION AND RELATEDWORKS
Steganography is the art of concealing a secret message inside
innocuous media to hide communication from everyone but the
recipient. The media used to hide the exchange is called a cover and
most digital media such as images and video files are well suited for
this task. Indeed, they can carry lots of bytes of information that
are irrelevant to humans and often difficult to detect for a machine.

Compatibility attacks are one type of algorithm in the toolbox
of steganalysis experts. They are considered universal in the sense
that they do not target a special embedding algorithm, but a format
of cover media. The main idea is to find a property present in every
cover of the same format, if this property is not present in a file,
then we can deduce, with some degree of incertitude, that this file
hides a message.

1.1 Related works
The JPEG format uses the Discrete Cosine Transform (DCT) and
rounding functions to compress an image. Those operations create
useful properties for compatibility attacks. The literature about such
attacks on JPEG images can be divided into two main categories:
one based on hard properties and one based on statistical properties.

One example of hard property can be found in one of the first
papers on digital image steganalysis by Fridrich et al. [6], which
focuses on messages embedded in the pixel domain for JPEG decom-
pressed images. Such an embedding scheme can create incompatible
blocks because they do not have any mathematical inverse in the
DCT domain. A brute force approach is proposed to detect such
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blocks but is limited to quality factors lower than 95 because of
complexity limitation. As a side note, the approach we propose in
this paper is conceptually similar to this pioneering reference, but
contrary to the reference, the embedding is also performed in the
JPEG domain and the property is also different. A similar strategy
relying on the detection of incompatible JPEG blocks was proposed
later on by Yousfi et al. [11]. In this paper, authors compute the
feasible dynamic range of DCT DC coefficients to detect a few stego
images that have been embedded in the DCT domain because the
DC value is larger than 1016. Note that the main advantage of com-
patibility attacks using hard properties is perfect reliability, in the
sense that a false alarm (i.e. detecting a stego content when there
is none) is impossible.

Examples of statistical properties are given by Kodovsky et.
al. [10], who target messages embedded in the pixel domain for ev-
ery quality factor. A feature is extracted and then classified using a
fusion of Fisher Discriminant Analysis. A more recent example has
been proposed by Butora et. al. [4] where authors target statistical
properties present in a feature called spatial rounding error. The
method focuses on messages embedded in the DCT coefficients of
JPEG images compressed at a high-quality factor (99 or 100). This
feature has a different distribution depending on the presence of a
message or not. The variance of the rounding error or CNN-based
steganalysis are then used to distinguish between both classes.

1.2 Outline of the paper
The compatibility attack proposed in this paper can detect a mes-
sage embedded in the DCT coefficients for high-quality factor com-
pression (close to 100) and belongs to the first category: it focuses
on a hard property.

The property used is the non-surjectivity of the compression: ev-
ery DCT block in a cover image must have an inverse image in the
pixel domain. But if this block is modified, the latter assertion can
sometimes no longer be true. We call them "incompatible" blocks
since no integer antecedent exists in the spatial domain. A toy visu-
alization is shown in figure 1 where those incompatible blocks are
orange stars and compatible DCT blocks are blue dots. Remark how
the spatial rounding error is a very good feature because it perfectly
separates the space between compatible and incompatible blocks.
The presence of incompatible blocks could explain the excellent
detection results obtained by Butora et. al. [4] who are training a
Deep Learning model on potentially incompatible rounding errors.
Our method do not use Deep Learning but profits from perfect
reliability and also benefits from good detection power because
there are potentially a lot of incompatible blocks in a stego image,
and a single incompatible block in the images is enough to classify
it as stego.

To show that a block is incompatible, we show that the inverse
image of a DCT block is a solution to an Integer Linear Program-
ming (ILP) problem. If this problem is proven to be unfeasible it
means that the block does not have any inverse image, hence being
incompatible. However, proving that such a problem is infeasible
for 8 × 8 blocks has shown complexity difficulties. For this reason
and clarity purposes, a sandbox approach of the JPEG with smaller
block sizes will be used to explain the concept and build the de-
tector. Moreover, even if the incompatibility cannot be practically

shown for 8× 8 stego blocks with our current computational power,
finding a solution for cover blocks takes a reasonable amount of
time. Therefore it is possible to derive a timing attack to perform
steganalysis on real JPEG images.

In cryptography, this methodology, called "Timing attacks", is a
side-channel attack used to infer the key (see for example [9]). It
is based on the fact that the time necessary to encrypt a message
can be dependent on the composition of the key. In this paper, the
timing attack is intertwined with the compatibility attack since we
will show in the rest of the paper that the time to find compatible
blocks can also be used as a steganalysis feature.

The first section will introduce JPEG compression and its corre-
sponding notations. The second section will focus on the character-
ization of the non-surjectivity property as well as its formulation
as an Integer Linear Programming problem. The third section will
present two sandbox experiments to analyze those incompatible
blocks for different sizes of JPEG blocks. Finally, the last section
will present a steganalysis detector based on a timing attack for
8 × 8 blocks.

2 PRELIMINARIES
2.1 Notations
Bold symbols will be used to identify vectors and matrices only.
The notation [·] is the rounding function towards an integer. JPEG
compression uses 2D blocks, however for clarity purpose, we prefer
to work with flattened version of the blocks, thus identifying the
coordinate of a block with a single index: x = (𝑥𝑖 ). Concerning
indexes, 𝑖 is reserved to coordinate in the spatial domain (also called
pixel domain) and 𝑘 is reserved for the DCT domain (also called
frequency domain).

2.2 JPEG Compression
We start by introducing a generalized version of the JPEG com-
pression for an arbitrary 2D block size (𝑛,𝑚) at a quality factor of
100. At such a quality factor, the quantization table is equal to 1 for
every coefficient, hence we will ignore it in the following notations.
Let M ∈ M𝑛𝑚,𝑛𝑚 (R) be the matrix associated with the Discrete
Cosine Transform, a linear transformation that can be considered
as a rotation. The inverse DCT is simply the transpose of the matrix:
M𝑇 . The following notations will be the same throughout the paper:

x ∈ [0; 255]𝑛𝑚 Original integer block flattened,
d = Mx ∈ R𝑛𝑚 Floating DCT coefficients,
c = [d] ∈ Z𝑛𝑚 Integer DCT coefficients,

y = M𝑇 c ∈ R𝑛𝑚 Floating decompressed block.

The final decompressed block can be obtained by rounding and
clipping y.

The JPEG pipeline is lossy during compression even for a quality
factor of 100. This is due to the rounding function applied in the
DCT and spatial domain. Let us define those two errors:

e = [y] − y Rounding error in spatial domain,
u = [d] − d Rounding error in DCT domain.

JPEG compression does not always use the same rounding func-
tion and the function used is not explicitly stored in the image.
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However, some methods such as the one presented in Butora et.
al. [3] allow us to detect the rounding function used at high-quality
factor. In our case, we use the round toward the nearest integer and
especially the version round half away from zero. This function is
the one used in the very popular JPEG library libjpeg as explained
by Beneš et. al. [1].

With those notations, we will see in the next section that JPEG
compression is not a surjective function and we will characterize
compatible DCT blocks using the spatial rounding error.

3 NON-SURJECTIVITY OF JPEG
COMPRESSION

3.1 Definition of the non-surjectivity:
It is defined by the fact that there exist DCT blocks c ∈ Z𝑛𝑚 , such
that there is no pixel block x̃ ∈ [0; 255]𝑛𝑚 for which 𝑐 = [Mx̃].

In other words, such blocks c do not have any antecedent1 and
those blocks are considered incompatible. Note that if a block is
compatible it can have multiple antecedents, that is why we use
the notation ·̃ to identify a compatible solution.

Given a DCT block c, if we want to find one compatible an-
tecedent, the known variables are e and y. The main unknown
variable is the DCT rounding error u. Thus, we start by deriving a
characterization of such rounding error:

[y] − x = [y] −M𝑇 d,

= [y] −M𝑇 (c − u),

= [y] −M𝑇 c +M𝑇 u,

= [y] − y +M𝑇 u,

= e +M𝑇 u.

(1)

Finally, by defining k = e+M𝑇 uwe have that u = M(k−e). Note
that the first part of this equation is a vector of integer, thus forcing
k to also be an integer. Without loss of generality, the following
characterization is defined for the rounding half-down function.

3.2 Characterization:
Let k ∈ Z𝑛𝑚 . We define x̃ = [y] − k and ũ = M(k − e) the DCT
rounding error associated to the compression of x̃. x̃ is a compatible
antecedent of c if and only if{−0.5 < �̃�𝑖 ≤ 0.5, if 𝑑𝑖 ≥ 0,

−0.5 ≤ �̃�𝑖 < 0.5, if 𝑑𝑖 < 0. (2)

Now that we have a condition to identify compatible antecedents,
we would like to find them. However, the set of possibilities de-
pends on every value of k. We can observe empirically (using the
compression error of real images from the ALASKA2 dataset) that
for quality factor 100, k ∈ {−1, 0, 1}𝑛𝑚 which gives us an upper
bound of the possibility of 3𝑛𝑚 . Hence, the brute force approach is
impossible for 8 × 8 blocks.

3.3 Optimization problem
In this section, we formalize the problem of finding an antecedent
of a DCT block as a canonical Integer Linear Programming (ILP)
1also called "inverse image" or "preimage" in algebra.
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Figure 2: Simple examplewith toy blocks of size (1, 2). e is the
original spatial rounding error but e′ is the spatial rounding
error obtained after embedding a message in the DCT coeffi-
cient. The blue dotted square and the orange dashed square
defines the constraints of the characterization of antecedent
for both situations. Note that no compatible integer values
are present inside the dashed square.

problem. Even if such a problem is NP-hard, there exist methods
and solvers able to find the solution or prove that the problem is
infeasible.

Note also that we do not know the DCT coefficient d before the
compression, but we can use c instead to have a good approximation
of the sign. This approximation can be wrong around 0 and create
wrong formulations, however, we can detect the problematic blocks
by compressing their antecedent, and if we do not find the same
DCT coefficients we know that the problem was incorrect and we
ignore this block. This issue only concern a minority of block based
on our experiment on 8 × 8 blocks in ALASKA dataset.

With the same notations as before, a potential antecedent x̃ =

[y] − k is compatible if k is solution of the following ILP problem:

min
k

1

s.t. ∀ 𝑖,
{−0.5 < �̃�𝑖 ≤ 0.5, if 𝑐𝑖 ≥ 0,
−0.5 ≤ �̃�𝑖 < 0.5, if 𝑐𝑖 < 0.

(3)

Note that the objective function does not matter since we are
only interested in feasible solutions to this ILP problem.

Let define𝜹 amask vectorwhere𝛿𝑖 = 1 if 𝑐𝑖 ≥ 0, 0 otherwise. The
canonical form can be defined as follows. Details about derivation
can be found in appendix B.

min
k

1,

s.t. lim
Y→0

Ak ≤ bY ,
(4)

whereA =

(
M
−M

)
∈ R2𝑛𝑚×𝑛𝑚 and bY = 0.5+Ae−

(
1 − 𝜹
𝜹

)
Y ∈ R2𝑛𝑚

and k ∈ Z𝑛𝑚 . The limit on Y is used to transform strict inequalities
into inequalities.
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JPEG image
Block (𝑛,𝑚)

Block (𝑛,𝑚)

ILP problem Gurobi solver


infeasible → incompatible = stego
feasible, good solution → continue
time limit reached, no solution → continue with timing attack
feasible, wrong solution → ignore, continue

Figure 3: Diagram of the model

3.4 Example
To get a visualization of such compatible blocks, we can see the
problem as follow. The constraints on ũ define a hypercube of size
1 in dimension 𝑛𝑚. Since the DCT is a rotation, M𝑇 ũ is a rotated
hypercube. Therefore, the compatible antecedents are the integer
coordinates inside the rotated hypercube of size 1 translated by e.

We construct a toy example to propose a visual representation of
the problem. Therefore, we need to work with blocks of size (1, 2).
Let x = (195, 84) be the original block. Its DCT coefficients after
subtracting 128 are c = (16, 78) and the decompression gives us
the spatial block [y] = (194, 84). The approximate spatial rounding
error is e = (−0.47,−0.16). This example is presented in figure 2.
The vector e is simply the rounding error and the dotted blue cube
around it defines the constraints of the characterization. Inside
this square (cube in 2D), there are two values of k which create
a compatible antecedent: (−1, 0) and (0, 0). Both values of k are
compatible since x + (−1, 0) = (194, 84) and x + (0, 0) = (195, 84)
after compression gives the DCT block c.

We now suppose that we embed a message in the DCT coeffi-
cients of the same block. We have a modification vectorm = (1,−1)
such that the new DCT block is c′ = c +m. The decompressed and
rounded block is y′ = (194, 86) and the new spatial rounding error
e′ = (−0.47, 0.43) as shown on the same figure. We can see that
for this modified DCT blocks, there is no integer point inside the
dashed red square. It means that this DCT block is incompatible.

The same situation generalizes to other dimensions and in par-
ticular (8, 8). This example also gives intuitions about other QF.
Indeed, lower QF will increase the size of the cube constraint de-
pending on the coefficient inside the quantization table. Thus, the
main intuition is that the lower the QF, the more antecedent exist
and the less this method can be used for detection. The next section
is dedicated to a deeper analysis of incompatible blocks.

3.5 Solving ILP problem
Solving ILP problems requires algorithms that belong to the fields
of optimization. Fortunately, Gurobi[7] with its python module
named Gurobipy can solve such problems. The solver is based on
a branch-and-bound approach that explores a tree of search. The
number of iterations is related to the difficulty of the problem. In
particular, for an infeasible problem, the search tree will be larger
and deeper in order to prove that no feasible solution exists. In this
case, the number of iterations is larger than when the search stops
at the first feasible solution.

The DCT block is decompressed to extract the spatial rounding
error used to build the canonical form of the optimization problem
as seen in section 3.3. Then, the problem is given to Gurobi which
stops its search if any feasible solution to the problem is found or

the time limit is reached. In the first case, it means that we found
a k such that ũ = M(k − e) is a compatible rounding error in the
DCT domain that lead to an antecedent in the spatial domain. In
this case, we cannot deduce anything from the block. However, if
Gurobi detects that the ILP problem is infeasible, it means that no
antecedent exists in the spatial domain. We then conclude that the
block has been modified in the DCT domain. A diagram of this
model is presented in figure 3. More details on the implementation
and the parameters used can be found on the git of the project 2.

4 ANALYSIS OF INCOMPATIBLE BLOCKS
When applying a modification to the DCT coefficients, one can
create an incompatible block but it is also possible to obtain another
compatible block. The question that arises from this observation is,
what is the probability to create an incompatible block? This section
proposes two experiments to give answers to the latter question.

In the first experiment, we record the proportion of incompatible
blocks for different numbers of modifications and different block
sizes. In the second experiment, we record the detection power
for all DCT blocks in the images depending on the payload in a
sandbox framework. Indeed, images will be compressed in blocks
of size (6, 6) and embedded using an LSBM algorithm. The reason
is that blocks of size (6, 6) can be proven incompatible very quickly
compared to (8, 8) blocks.

Both experiments use blocks cropped from real images present
in the ALASKA dataset in pixel format. The JPEG compression is
done on each block as explained in section 2.2 using the round half
away from zero function (i.e. [0.5] = 1 and [−0.5] = −1).

4.1 Number of changes and incompatibility
In this experiment, we use random blocks of size (4, 4), (5, 5), and
(6, 6). For each block, we select 𝑝 random DCT coefficients and
each coefficient is going to be modified by either +1 or −1. We then
build the optimization problem as explained in section 3.3. And we
use the Gurobi solver through the Gurobipy Python module to try
to find a solution to the ILP problem.

Figure 4 depicts the empirical probability of creating an incom-
patible block. The first observation is that the probability is quite
high even for a single modification and this probability grows with
the number of modifications. The second observation is that the
probability depends on the size of the block. For a single modifica-
tion, the bigger the block, the least probable it is to be incompatible.
Last observation, the trend seems to converge to a fixed value after
several changes.

We try to give an interpretation of this convergence. For no
change at all, the probability equals 0 because there is always an

2https://gitlab.cristal.univ-lille.fr/elevecqu/inversing-jpeg-compression-qf100

https://gitlab.cristal.univ-lille.fr/elevecqu/inversing-jpeg-compression-qf100
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Figure 4: Proportion of incompatible blocks detected de-
pending on the number of modification apply to the DCT
coefficients. For block of size (6, 6), the empirical probability
of building an incompatible block bymodifying 4 coefficient
is approximately 65%.

antecedent and every DCT blocks are compatible if no modification
has been done. Using the example from figure 2, it means that
an integer coordinate is inside the cube of constraint. Then it is
important to understand that the side of the hypercube is the same
but its diagonals gets bigger with the dimension. Thus, applying a
small modification in the DCT domain (a single change for example)
will translate the block only a little. Hence, there is still a large
probability to have the same integer coordinate inside the dashed
hypercube. However for more modifications, the translation of the
block is bigger, so we converge toward the probability to take a
randomly rotated hypercube of side length 1 anywhere in the space
and to compute the odd that there is no integer point inside this
cube.

We want to draw the reader’s attention to the fact that those
probabilities are for a single block. Let us assume the worst-case
scenario in size (6, 6), every modified block of an image has only
one modification. The probability to detect such a block is around
0.4 which means that the probability of detecting nothing and thus
having a false negative is (1 − 0.4)𝑟 with 𝑟 the number of modified
blocks. This value is very small, close to 0.6%, for only 10 modified
blocks.

The next experiment is a deeper analysis of this detection power
for a given payload.

4.2 Payload and detection power
For this experiment, we want to evaluate the power detection of
such a model. However, proving that a block of size (8, 8) is incom-
patible takes too much time. Therefore, we will be using blocks of
size (6, 6). Images come from the ALASKA dataset and are of size
256 × 256 but will be cropped to fit a multiple of the block size. We
use a modified LSBM algorithm to embed images with a payload of
0.01 bpnzac (bit per non-zero AC coefficient) using optimal coding.
Note that contrary to adaptive ternary embedding schemes, LSBM
with optimal coding is the strategy which, on average, minimizes
the number of embedding changes. Figure 5 presents the number of
incompatible blocks depending on the number of embedded blocks
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Figure 5: Number of incompatible DCT blocks depending on
the number of modified blocks using 1000 images of size
256 × 256 embedded using an LSBM with blocks size of (6, 6)
and payload 0.01 bpnzac.

for such and embedding rate. This experiment shows that the detec-
tion power is very good since even a single incompatible block can
prove that the DCT coefficients of the images have been changed.
In this experiment, we don’t have any errors over 1000 images.

Those sandbox experiments give some understanding of the com-
patibility however they did not represent the real-world scenario of
detecting stego messages embedded in (8, 8) DCT blocks. The next
section presents a timing attack to address this realistic scenario.

5 TIMING ATTACK ON REAL STEGO IMAGES
5.1 Experimental framework
ILP problems are classified as NP-hard and therefore the complexity
to solve them grows very quickly with the number of variables. In
our case, this number of variables is the size of blocks. Hence, we
can prove that blocks of size (7, 7) are incompatible after several
minutes but the time required to do the same with blocks of size
(8, 8) has never been reached. However, when blocks are compatible,
the time required to find a feasible solution to the ILP problem is
very reasonable. For example, the longest time recorded on our
machines is less than 20 minutes to find a solution in the worst case.
This difference of time, related to the important number of iterations
to solve harder ILP problems, is targeted in this experiment to build
a timing attack.

The ALASKA dataset [5] is composed of gray-scale images from
different sources, but in our case sources do not matter at all since
only JPEG compression at a fixed quality factor is targeted. Images
are embedded using J-UNIWARD [8] with a payload of 0.1 bpnzac.

We start by filtering our clipped blocks. For example, if during
decompression the block is clipped between 0 and 256, we ignore
this block because the rounding error can be outside of our model.
For all other blocks, we extract the spatial rounding error and we
build an ILP problem as presented in section 3.3. Using Gurobipy
we try to find an antecedent of this block in the spatial domain.
However, we stop the solver after a certain time. There are two
possibilities from this point, either the solver found a solution in
less than the time limit or the solver did not find anything, and the
problem is unsolved.
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Figure 6: Distribution of the ratio of "unsolved" blocks of
size (8, 8) per image with a time limit of 100 seconds for each
block. "unsolved" blocks are those for which the ILP prob-
lem has not been solved.
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Figure 7: Evolution of the minimal error under equal prior
for different time limits for block of size (8, 8). The longer
the time, the more discriminating the model is.

5.2 Results
Figure 6 shows the distribution of the ratio of unsolved blocks per
image for cover and stego images with a time limit of 100 seconds
for each block. This ratio of unsolved blocks per image is a very
discriminating feature to detect stego images as shown in figure 7
which presents the evolution of the minimal total error under equal
priors defined as:

𝑃𝐸 = min
𝑃𝐹𝐴

𝑃𝐹𝐴 + 𝑃𝑀𝐷 (𝑃𝐹𝐴)
2

As the time limit growths, the solver will find feasible solutions
for all blocks of cover images. Therefore, the distribution of the
ratio of unsolved block per images will collapse to a Dirac in 0.
But for stego images, incompatible blocks will remain unsolved
and the ratio of unsolved block will converge to the proportion of
incompatible blocks in the image.

We see however that the designed timing attack exbibits an
exponential complexity w.r.t. the probability of error, and that it
can be rather time consuming: the time had to be multiplied by 100
in order to divide the probability of error by 2.

6 CONCLUSIONS AND PERSPECTIVES
For high quality-factor JPEG image, modifying the DCT coefficients
can creates incompatible blocks that do not have any antecedent in
the spatial domain. Using a characterization of compatible blocks
we derive an ILP problem formulation. With the help of a solver, we
can show that some blocks are incompatible for reasonable size up
to (7, 7). This method is perfectly reliable and benefits from a very
good detection power capable of detecting payloads of 0.01 bpnzac.
However solving ILP with block size of (8, 8) takes too much time
but the time can also be used as a feature to discriminate stego
images from covers. Using this timing attack, we show that reliable
detector can be obtain with sufficient amount of time.

In futures work it could be interesting to have a deeper analysis
of this incompatible blocks for lower quality-factor. Indeed, the
constraints defined by the characterization should grow larger and
thus enabling more solutions to the ILP problem. Another perspec-
tive could be to improve the ILP problem and its implementation.
There exist symmetry properties that have been ignored in this
work and which could be the key to solve infeasible blocks of size
(8, 8).
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A DETAILS ON THE CHARACTERIZATION
OF JPEG ANTECEDENTS

Even if the characterization has been presented for quality factor
100, it can be extended to every quality factor as it will be shown
here. Let q be the quantization table. The division between two
vectors is performed element-wise in the following derivations and
the symbol · denotes the element-wise multiplication. The notations
need to be extended to take this quantization into account:

x ∈ [0; 255]𝑛𝑚 Original integer block flattened
d = Mx ∈ R𝑛𝑚 Floating DCT coefficients
c = [d/q] ∈ Z𝑛𝑚 Integer DCT coefficients

y = M𝑇 (c · q) ∈ R𝑛𝑚 Floating decompressed block
e = [y] − y ∈ R𝑛𝑚 Rounding error in spatial domain
u = [d/q] − c ∈ R𝑛𝑚 Rounding error in DCT domain

Equation 1 becomes:

[y] − x = [y] −M𝑇 d

= [y] −M𝑇 ((c − u) · q)

= [y] −M𝑇 (c · q) +M𝑇 (u · q)

= [y] − y +M𝑇 (u · q)

= e +M𝑇 (u · q)

(5)

And the characterization becomes: Let k ∈ Z𝑛𝑚 . We define x̃ =

[y] − k and ũ = (M(k − e))/q the DCT rounding error associated
to the compression of x̃. x̃ is a compatible antecedent of c if and
only if {−0.5 < �̃�𝑖 ≤ 0.5, if 𝑑𝑖 ≥ 0,

−0.5 ≤ �̃�𝑖 < 0.5, if 𝑑𝑖 < 0. (6)

Proof of the necessary assertion is obtained by construction, we
details the calculus for the sufficient assertion. Let k be a vector of
integers such that ũ = (M(k−e))/q respects the constraint in 6. We
can define the potential antecedent, x̃ = [y] − k. The compression
of this antecedent is the following:[

Mx̃
q

]
=

[
M ( [y] − k)

q

]
=


M (y + e) −M

(
e +M𝑇 (ũ · q)

)
q


=

[
c · q − ũ · q

q

]
= [c − ũ]
= c

We proved that the compression of an antecedent build thanks to
the constraints of the characterization yield the same compressed
block thus being compatible and proving the sufficient assertion.

B DERIVATION OF THE ILP CANONICAL
FORM

A potential antecedent x̃ = [y] − k is compatible if k is solution of
the following ILP problem:

min
k

1

s.t. ∀ 𝑖,
{−0.5 < �̃�𝑖 ≤ 0.5, if 𝑐𝑖 ≥ 0,
−0.5 ≤ �̃�𝑖 < 0.5, if 𝑐𝑖 < 0.

(7)

Using the problem notations M, k and e the constraints are equiva-
lent to:

∀ 𝑖,


−(Mk)𝑖 < 0.5 − (Me)𝑖 if 𝑐𝑖 ≥ 0
(Mk)𝑖 ≤ 0.5 + (Me)𝑖 if 𝑐𝑖 ≥ 0

−(Mk)𝑖 ≤ 0.5 − (Me)𝑖 if 𝑐𝑖 < 0
(Mk)𝑖 < 0.5 + (Me)𝑖 if 𝑐𝑖 < 0

(8)

In order to remove the strict inequalities, one introduces Y > 0 a
slack variable going to 0:

∀ 𝑖,



lim
Y→0

−(Mk)𝑖 ≤ 0.5 − (Me)𝑖 − Y if 𝑐𝑖 ≥ 0

(Mk)𝑖 ≤ 0.5 + (Me)𝑖 if 𝑐𝑖 ≥ 0
−(Mk)𝑖 ≤ 0.5 − (Me)𝑖 if 𝑐𝑖 < 0

lim
Y→0

(Mk)𝑖 ≤ 0.5 + (Me)𝑖 − Y if 𝑐𝑖 < 0

(9)

Finally, let us define 𝜹 a mask vector where 𝛿𝑖 = 1 if 𝑐𝑖 ≥ 0, 0
otherwise. The problem can be defined as:

min
k

1

s.t. lim
Y→0

Ak ≤ bY
(10)

where A =

(
M
−M

)
and bY = 0.5 + Ae −

(
1 − 𝜹
𝜹

)
Y
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