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Abstract—In this paper, we tackle the problem of detecting the
so-called Adobe pattern. Recent research [4] showed that RAW
and 16-bit images developed with the Lightroom or CameraRaw
software into 8-bit formats are modified by an imperceptible
periodical pattern. This 128 × 128 pattern is influenced by the
16-bit valued content and is incorporated in the 16-bit domain,
making it impossible to estimate perfectly from real 8-bit images.
Furthermore, as this periodic pattern can be perceived as a bias
shared among different users and camera models, it has led to
inaccurate camera attribution when working with the Photo-
Response Non-Uniformity (PRNU). To effectively eliminate this
bias, it is therefore imperative to have an accurate method of
detecting the Adobe pattern. We model the content-dependent
Adobe pattern as a deterministic pattern corrupted by uniform
noise, which enables us to frame the detection of the Adobe
pattern as a hypothesis test. Using the Likelihood Ratio Test,
we demonstrate that for images without the Adobe pattern, a
meticulously designed test statistic follows a zero-mean Gaussian
distribution with a constant variance. Moreover, the detection
accuracy exceeds 90% at false positive rate of 10−4 for 128×128
images JPEG compressed with quality 80, and improves with
higher image quality. Finally, we find that around 16% of images
in the FFHQ dataset [9] of real faces contain the Adobe pattern.

Index Terms—Adobe, 16-bit watermark, expected watermark
detection

I. INTRODUCTION AND PREVIOUS WORKS

The Photo-Response Non-Uniformity (PRNU) has been a
very popular forensic tool for camera sensor attribution ever
since its development in 2005 [10]. It states that each photo-
site of a camera sensor is distorted by a multiplicative noise
(i.e. proportional to the light intensity entering the sensor), the
PRNU, which is present due to various physical imperfections
during its manufacture. This noise is the same for all scenes
for a given sensor, however is different from one sensor to
another. The PRNU survives the image development process
and its effect can be described as:

I = I0 + KI0 + Θ, (1)

where I, I0,K, and Θ represent respectively the captured
image, the noiseless image, the PRNU, and a collection of
random independent noise components.

Estimating the PRNU K̂ for a given camera sensor provides
a camera fingerprint, which can be used for various forensic
tasks, such as attributing images to the sensor or detecting
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Fig. 1. The estimated Adobe pattern w used for detection in this work.

local manipulations of the images with a False Positive (FP)
rate of ∼ 10−5 [5], [7].

Recently, several publications, however, pointed out that
the previously reliable PRNU suffers from much larger FP
rates [1]–[3], [8]. Most notably, we showed in our recent
work [4] that RAW and 16-bit coded images developed by
Adobe Lightroom and Photoshop’s plug-in CameraRaw are
modified by a deterministic and content-dependent periodic
pattern w of size 128× 128. Expanding this pattern so it fits
the whole image, its effect can be written as:

I = I0 + KI0 + w + Θ. (2)

In the paper, we showed that this additional bias corrupts
the PRNU estimates leading to false positives whenever
the images have been developed with the Adobe software.
Furthermore, in [4] we proposed two ways of removing this
pattern. However, to improve the methods of the pattern
removal, we first need to be able to reliably establish the
presence of the pattern, which is the main contribution of this
paper. This detector can also be used to check if the pattern
appears inside a reference database or for forensic purposes.



II. NOTATION AND PRELIMINARIES

A. Notation

Boldface symbols are reserved for matrices and vectors.
Uniform distribution on the interval (a, b) will be denoted
U(a, b) while N (µ, σ2) is used for the Gaussian distribution
with mean µ and variance σ2. For a variable X , we denote
E[X] = µX its mean and σ2

X its variance. If X is not a random
variable, we will understand sample mean and variance by
these symbols.

To quantize a 16-bit value to 8-bit, typically implemented
with bit shifts, we define the quantizer operator:

Q(x) =
⌊ x

256

⌋
, (3)

where bxc denotes the floor operator.
The original 16-bit grayscale image with N1 × N2 pixels

is denoted X′ ∈ {0, 1, . . . , 216 − 1}N1×N2 , while its 8-bit
quantized version is X = Q(X′) ∈ {0, 1, . . . , 255}N1×N2 .

For ease of notation, we will consider that images are
composed of N vectorized blocks of size n: X = (xi)

N
i=1,

with xi ∈ {0, . . . , 255}n and we will be dropping the block
index if not necessary. For a given block x, we denote
xi ∈ {0, . . . , 255}, i = 1, . . . , n its pixels. In our scenario,
we will use n = 128× 128 and N = 4× 4.

B. The Adobe Pattern

It was pointed out in [4] that developing images with
Adobe Lightroom or Camera Raw from RAW or 16-
bit format to 8-bit formats (whether uncompressed or
JPEG compressed) injects a noise-like periodic pattern
of size 128 × 128. This pattern, which Adobe claims
is used for image dithering, is inserted into the 16-bit
representation before the subsequent quantization to 8-bit
format, which makes it visually imperceptible. We were
informed that the dithering function is implemented in the
Adobe DNG SDK, specifically the dng_utils.cpp file.
However, the pseudo-random generator of the mentioned
dithering function (called dng_dither) is always initialized
with the same seed, creating a deterministic signal w′.
Furthermore, the function dng_encode_proxy_task in
dng_negative.cpp shows how this signal, which we will
refer to as the Adobe pattern, is injected into the image:

Dither(x′) = ((x′ � 8)− x′ + w′)� 16, (4)

where �,� represent the left and right bit-shifts.
This creates a detectable statistical bias which can lead to

false positives in camera sensor attribution [8]. We define the
Adobe quantizer as:

QA(x
′) = Q(x′ + w′(x′)), x′ ∈ {0, . . . , 216 − 1}, (5)

where w′(x′) = w′−x′

256 is the 16-bit valued content-
dependent Adobe pattern.

While the Adobe pattern is a periodical signal, it was
shown that it depends on both, the architecture used for the

Fig. 2. The scheme used for brute-forcing the Adobe pattern with value w =
86. The quantization threshold for the QA(.) quantizer is 256− w = 170.

image development, and the image content itself because of
the conversion from 16 bits to 8 bits. It is therefore not
straightforward to remove such a signal from a given image,
although it has been proposed in [4].

In this work, we aim to advance the previously proposed
methodology by first designing a classifier able to detect the
presence of this pattern. This detector could be for example
used to first detect the watermark and then afterward to
suppress it during the PRNU estimation in order to remove
false positives.

III. ADOBE PATTERN DETECTION

To detect the presence of the Adobe Pattern, we first
estimate it and subsequently use hypothesis testing to establish
the presence of the estimated pattern.

A. Estimating the Pattern

While the Adobe pattern is variable across pixel values and
architectures, we have been able to estimate its behavior. In
particular, for every developed pixel yi, the pattern is added
as a last step of the development before the quantization to 8
bits:

yi = QA(x
′
i)

= xi + wi(x
′
i) + ui, (6)

where xi = x′i/256, wi(x′i) = (w′i(x
′
i) − 128)/256, and

ui ∼ U(−1/2, 1/2) is a uniform quantization error. While
the Adobe pattern can be viewed as a keyless watermark, the
fact that the watermarked images are further corrupted by a
stochastic component fundamentally distinguishes it from a
typical additive watermark thus making its detection somewhat
more complicated.

Furthermore, we brute-forced the Adobe pattern for values
c ∈ {0, . . . , 255} by developing 256 constant 16-bit images of
size 128× 128, each containing only one single value c, into
8-bit with Adobe Lightroom. We concluded that at any given
position in the block, the Adobe pattern value is equal to

w′i = 256−min{ci : QA(ci) = 1}, (7)

where this process is visualized in Figure 2.
After repeating similar experiments for larger values c, we

observed a very useful property of the Adobe pattern on
different pixel values. If we shift all the block pixels by 256,



all the watermark values get shifted by some constant value
a. Specifically, we observe from the definition of w′(x′) that

w′i(x
′) = w′i(x

′ + 256a)− a, ∀i = 1, . . . , n, (8)

for any a ∈ {−256, . . . , 256}. Consequently, we model the
Adobe pattern of any block of pixels with

w′i(x
′) = w′i(x

′ mod 256) + ai

= w′i + ai, (9)

where ai ∼ U(−256, 256) and w′i comes from (7). Note
that this implies w′i = E[w′i(x′)], where the expectation is
taken over all possible pixel values x′ ∈ {0, . . . , 216 − 1}.
Plugging (9) into (6), we obtain

yi = xi + wi + ξi, (10)

where wi = (w′i − 128)/256, and ξi is a zero-mean noise
component composed of ui, ai/256 and potentially other post-
processing noise.

Consequently, the values wi can be seen as the expected
8-bit float-valued Adobe watermark (with a bias correction).
The values of w are visualized in Figure 1 and available for
download at https://github.com/janbutora/adobe-detector.

Finally, we observed that for images taken in portrait
orientation (i.e. after 900 rotation), the Adobe pattern is
embedded as if the image was taken in landscape orientation
(see Figure 3 for visualization).

B. Detection of Expected Watermark

In the following, we will cast the problem of detecting the
Adobe pattern as a detection of a known watermark, even
though we only consider the expected value of the Adobe
pattern. The detection of a known watermark w ∈ Rn in an
image block y ∈ Rn with noise residual r = y − x̂ can be
described as a hypothesis test

H0 : ri = xi − x̂i + ξi, (11)
H1 : ri = wi + xi − x̂i + ξi, (12)

where x̂, ξ represent respectively the denoised image, and
an independent noise component coming from both the post-
processing (e.g. JPEG compression) and the impact of the host
content during quantization (see previous subsection).

We use the denoiser proposed in [11], typically employed
for the PRNU estimation [7]. For simplicity, we assume that
both the image noise and the residual are zero-mean Gaussians
with xi − x̂i ∼ N (0, σ2

x), and ξi ∼ N (0, σ2
ξ ). With these

simplifications, we obtain

H0 : ri ∼ N (0, σ2
r), (13)

H1 : ri ∼ N (wi, σ
2
r), (14)

where σ2
r = σ2

x + σ2
ξ .

ww

w

Fig. 3. The location of the Adobe pattern w in portrait-oriented images.

The test statistic of the optimal test, the Likelihood Ratio
Test, can then be expressed as a correlation between r and w.
However, to unify the distribution of the test statistic under
the null hypothesis for any possible image, we use the Pearson
correlation coefficient as a test statistic for a single block of
size n:

ρ =
1
n

∑n
i=1(ri − µr)(wi − µw)

σrσw
, (15)

where σr, σw denote the empirical standard deviations
of the block residual r and the watermark w. It is then
straightforward to show that under the null hypothesis µρ = 0
and σ2

ρ = 1
n , where we remind the reader that in our case

n = 1282. Aggregating the test statistic from the whole image,
the Central Limit Theorem (CLT) states that under H0,

T =
1√
N

N∑
i=1

ρi
d→ N

(
0,

1

1282

)
. (16)

Note that the test statistic T (16) is rather convenient as
its distribution under the null hypothesis does not depend on
the image size. We can compute a decision threshold τα for a
prescribed FP rate α as

τα =
Q−1(α)

128
, (17)

where Q−1(·) is the inverse Q-function.

https://github.com/janbutora/adobe-detector


Under the alternative hypothesis, we find for a single block
that

EH1 [ρ] =

∑
i E [riwi]

nσrσw

=

∑
i w

2
i + wiE[xi − x̂i + ξi]

nσrσw

=
σw
σr
, (18)

where we assumed for simplicity µr = µw = 0.
Similarly, we find

VarH1
(ρ) =

∑
iVar (riwi)

n2σ2
rσ

2
w

=

∑
i w

2
iVar(xi − x̂i + ξi)

n2σ2
rσ

2
w

= 1/n. (19)

We cannot employ the CLT the same way as for the null
hypothesis due to different means for every ρi. Still, we can
observe that the detection of the alternative hypothesis will
be more powerful in blocks with small residual variance σ2

r .
This also implies that the harsher the post-processing of the
developed images, the weaker the pattern will be since σξ and
consequently σr will increase. For instance, we will see in
Section III-D that the pattern is almost undetectable after JPEG
compression with Quality Factor 20 but is very detectable for
higher JPEG quality settings.

Interestingly, we can make a claim that considering a
different test statistic

T1 =
1√
N

N∑
i=1

(
ρi −

σw
σri

)
(20)

allows us to model this statistic’s distribution under the
alternative hypothesis with

T1
d→ N

(
0,

1

1282

)
. (21)

This provides an interesting trade-off between control of the
False Positive (FP) rate and control of the True Positive (TP)
rate, but for the purposes of this work, we only use the test
statistic (16).

C. Experimental Setup

To evaluate our methodology, we randomly selected 10k
uncompressed grayscale images from ALASKA 2 dataset [6]
of size 2048×2048 and generated from them non-watermarked
and watermarked images. To generate the non-watermarked
images, we cropped the upper-left corner of size 512 × 512
and JPEG compressed using python’s PIL library with Quality
Factors (QFs) 20, 40, 60 and 80.

To generate the watermarked images, we first converted the
images into 16-bit integers by multiplying the pixel values
by 28 and saved them with python tifffile library into

10−4 10−3 10−2 10−1 100

Theoretical False Positive Rate

10−4

10−3

10−2

10−1

100

E
m

p
ir

ic
al

F
al

se
P

os
it

iv
e

R
at

e

QF 80

QF 60

QF 40

QF 20

Fig. 4. False positive rate: theoretical vs empirical check for 512 × 512
images JPEG compressed with different quality factors.
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Fig. 5. True positive rate for watermarked images of size 512 × 512
compressed with different JPEG quality factors as a function of Gaussian
FP rate.

16-bit TIF images. We then used Adobe Lightroom Classic
to resize the images to 512 × 512 and JPEG compress with
the same range of quality factors as above. While the manual
conversion of images to 16-bit TIF might seem unnecessary,
the subsequent conversion from 16-bit to 8-bit ensured that
the Adobe pattern was embedded.

D. Results

First, we study the quality of the Gaussian assumption (16).
In Figure 4, we show empirical FP rate as a function of a
Gaussian FP rate obtained as α = P (X > τα) for X ∼
N (0, 1

1282 ), and τα defined in (17). The empirical FP rate is
then computed as P (T > τα|H0) and we see a very clear fit
for values above α = 10−3. For lower values of α, the fit gets
noisy due to an insufficient amount of data.

Due to the very accurate match between the two FP rates,
we only consider the theoretical FP rate to compute the TP
rate: TPR = P (T > τα|H1). We show the ROC curve
obtained this way in Figure 5. On one hand, we can observe
a TP rate greater than 90% for JPEG Quality Factors (QF)
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Fig. 6. True positive rate for watermarked images JPEG compressed with
quality factor 80 and cropped into different sizes as a function of Gaussian
FP rate.

higher than 20 for a theoretical FP rate as small as 10−8.
On the other hand, it seems that at QF 20, the watermark is
heavily corrupted making it very hard to detect, although some
detection is still possible for FP rates above 10−5.

While the distribution of the test statistic under the null
hypothesis (16) is independent of the image size, it is not true
under the alternative hypothesis, a fact that is suggested by the
different scaling factors between (16) and (20). Figure 6 shows
the TP rate for different image crops compressed with QF 80.
It is shown that even for a single block of size 128 × 128
the adobe pattern is close to 90% detectable at FP rate 10−4,
while the detection increases rapidly for larger image sizes.

To verify how widespread the Adobe pattern is in real data,
we randomly selected 1000 images from the FFHQ dataset [9].
With a threshold set for FP rate 10−5, we found that 15.6% of
these images are carrying the Adobe pattern. This observation
can have serious consequences for the forensics community.

IV. CONCLUSIONS AND PERSPECTIVES

This paper is the continuation of the contribution [4] which
shows that Adobe Lightroom embeds a pattern/watermark
while developing RAW or 16-bit images. Since the watermark
is not key-dependent, it is possible to obtain its expectation by
brute-forcing specific inputs into the software. A correlation-
based detector is designed to detect the watermark on each
128 × 128 patch. Results indicate that the detector achieves
good detection performance even on small patches and JPEG
quality factors smaller than 80.

We did not consider additional geometric image
transformations, as such a study would be out of the
scope of this paper. However, we plan to expand the proposed
method to additional image post-processing operations, such
as rotations, resizing, etc.

Interestingly, we also found out that popular databases in
machine learning, such as FFHQ-wild, have more than 15% of
the images corrupted with the Adobe pattern. Our future works

will explore how to use this detector for forensic purposes or
to potentially detect data poisoning in machine learning.

The code used to estimate the Adobe pattern and to generate
the results in this work is available at https://github.com/
janbutora/adobe-detector.
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