Name File SW Proposed
MODE loss MODE-loss Pytorch [1]
Robust Antecedent UERD Antecedent_UERD.zip Python [2]
Adobe detector adobe-detector Python [3]
Adobe PRNU removal prnu-python Python [4]
Robust UERD Robust_UERD.py Python [5]
JEEP JEEP.py Python [6]
SVP SVP.py Python [7]
JIN-SRNet JIN_SRNet.zip PyTorch [8]
PQ-UNIWARD PQ-UNIWARD_matlab.zip Matlab [9]
PL Steganalysis pytorch-lightning-steganalysis Pytorch -
JPEG Tools JPEG_utils.py Python -
Embedding Simulator embedding_simulator.py Python -
ixlnx2 ixlnx2.npy NumPy -

References

  1. MODE: Loss Function for Deep Steganalysis at Low False Positive Rate
    Butora, J., & Bas, P.
    33rd European Signal Processing Conference
  2. Errorless Robust JPEG Steganography for Pixel Images
    Butora, J., Bas, P., & Levecque, E.
    IEEE WIFS 2024
  3. Detection of the Adobe Pattern
    Butora, J., & Bas, P.
    32nd European Signal Processing Conference
  4. The Adobe Hidden Feature and its Impact on Sensor Attribution
    Butora, J., & Bas, P.
    12th IH&MMSec. Workshop 2024
  5. Errorless Robust JPEG Steganography using Outputs of JPEG Coders
    Butora, J., Puteaux, P., & Bas, P.
    IEEE Transactions on Dependable and Secure Computing
  6. Side-Informed Steganography for JPEG Images by Modeling Decompressed Images
    Butora, J., & Bas, P.
    IEEE Transactions on Information Forensics and Security
  7. Fighting the Reverse JPEG Compatibility Attack: Pick your Side
    Butora, J., & Bas, P.
    10th IH&MMSec. Workshop 2022
  8. How to Pretrain for Steganalysis
    Butora, J., Yousfi, Y., & Fridrich, J.
    9th IH&MMSec. Workshop 2021
  9. Revisiting Perturbed Quantization
    Butora, J., & Fridrich, J.
    9th IH&MMSec. Workshop 2021